The status of European Space Agency supported detector developments

Author(s):  
Nick Nelms ◽  
Kyriaki Minoglou ◽  
Alessandra Ciapponi ◽  
Thibaut Prod'homme ◽  
Roland Meynart ◽  
...  
2021 ◽  
Author(s):  
Tommaso Parrinello ◽  
Anne Grete Straume ◽  
Jonas Von Bismark ◽  
Sebastian Bley ◽  
Viet Duc Tran ◽  
...  

<p>The European Space Agency (ESA)’s wind mission, Aeolus, was launched on 22 August 2018. It is a member of the ESA Earth Explorer family and its main objective is to demonstrate the potential of Doppler wind Lidars in space for improving weather forecast and to understand the role of atmospheric dynamics in climate variability. Aeolus carries a single instrument called ALADIN: a high sophisticated spectral resolution Doppler wind Lidar which operates at 355 which is the first of its kind to be flown in space.</p><p>Aeolus provides profiles of single horizontal line-of-sight winds (primary product) in near-real-time (NRT), and profiles of atmospheric backscatter and extinction. The instrument samples the atmosphere from about 30 km down to the Earth’s surface, or down to optically thick clouds. The required precision of the wind observations is 1-2.5 m/s in the troposphere and 3-5 m/s in the stratosphere while the systematic error requirement be less than 0.7 m/s. The mission spin-off product includes information about aerosol and cloud layers. The satellite flies in a polar dusk/dawn orbit (6 am/pm local time), providing ~16 orbits per 24 hours with an orbit repeat cycle of 7 days. Global scientific payload data acquisition is guaranteed with the combined usage of Svalbard and Troll X-band receiving stations.</p><p>After almost three years in orbit and despite performance issues related to its instrument ALADIN, Aeolus has achieved most of its objectives. Positive impact on the weather forecast has been demonstrated by multiple NWP centres world-wide with four European meteorological centres now are assimilating Aeolus winds operationally. Other world-wide meteo centers wull start to assimilate data in 2021. The status of the Aeolus mission will be presented, including overall performance, planned operations and exploitation. Scope of the paper is also to inform about the programmatic highlights and future challenges.</p>


2020 ◽  
Author(s):  
Pepijn Veefkind ◽  
Ilse Aben ◽  
Angelika Dehn ◽  
Quintus Kleipool ◽  
Diego Loyola ◽  
...  

<p>The Copernicus Sentinel 5 Precursor (S5P) is the first of the Sentinel satellites dedicated to the observation of the atmospheric composition, for climate, air quality and ozone monitoring applications. The payload of S5P is TROPOMI (TROPOspheric Monitoring Instrument), a spectrometer covering spectral bands in ultraviolet, visible, near infrared and shortwave infrared, which was developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI has a wide swath of 2600 km, enabling daily global coverage, in combination with a high spatial resolution of about 3.5 x 5.5 km<sup>2</sup> (7 x 5.5 km<sup>2</sup> for the SWIR band).</p><p>S5P was successfully launched on 13 October 2017 and following a six-month commissioning phase, the operational data stream started at the end of April 2018. All of the TROPOMI operational data products have been released, with the exception of the ozone profile, which is planned to become available with the next major release[AR1]  of the Level 1B data. In addition to the operational data products, new research products are also being developed.</p><p>In this contribution, the status of TROPOMI and its data products will be presented. Results for observations of recent events will be provided, along with an outlook on the next release of the data products.</p><div> <div> <div> </div> </div> </div>


2020 ◽  
Author(s):  
Tommaso Parrinello ◽  
Anne Grete Straume ◽  
Jonas Von Bismark ◽  
Sebastian Bley ◽  
Viet Duc Tran ◽  
...  

<p>The European Space Agency (ESA)’s wind mission, Aeolus, was launched on 22 August 2018. Aeolus is a member of the ESA Earth Explorer family and its main objective is to demonstrate the potential of Doppler wind Lidars in space for improving weather forecast and to understand the role of atmospheric dynamics in climate variability. Aeolus carries a single instrument called ALADIN: a high sophisticated spectral resolution Doppler wind Lidar which operates at 355 which is the first of its kind to be flown in space. It provides profiles of single horizontal line-of-sight winds (primary product) in near-real-time (NRT), and profiles of atmospheric backscatter and extinction. The instrument samples the atmosphere from about 30 km down to the Earth’s surface, or down to optically thick clouds. The required precision of the wind observations is 1-2.5 m/s in the troposphere and 3-5 m/s in the stratosphere while the systematic error requirement be less than 0.7 m/s. The mission spin-off product includes information about aerosol and cloud layers. The satellite flies in a polar dusk/dawn orbit (6 am/pm local time), providing ~16 orbits per 24 hours with an orbit repeat cycle of 7 days. Global scientific payload data acquisition is guaranteed with the combined usage of Svalbard and Troll X-band receiving stations.</p><p>The status of the Aeolus mission will be provided, including its performance assessment, planned operations and exploitation in the near future. This comprises the outcome of the instrument in its early operation phase, calibration and validation activities and a general review of the main scientific findings. Scope of the paper is also to inform about the programmatic highlights and future challenges.</p>


2005 ◽  
Vol 13 ◽  
pp. 905-905 ◽  
Author(s):  
J.-P. Lebreton ◽  
D. L. Matson

Huygens is an entry probe designed to descend under parachute through the atmosphere of Titan, Saturn’s largest moon. The Huygens Probe is provided by the European Space Agency (ESA) for the Cassini/Huygens mission to Saturn and Titan. The Huygens mission will be conducted on the 3rd Orbit around Saturn. The probe will be released around December 25, 2004 for entry in Titan on January 14, 2005. This paper provided an overview of the Huygens mission. The status of the probe and of the mission was reviewed, and opportunities for Titan observations by the Orbiter during the first two orbits were discussed. The Cassini/Huygens mission is a joint undertaking by NASA and ESA, with ASI as a partner via a bilateral agreement with NASA.


2021 ◽  
Author(s):  
Alessandro Frigeri ◽  
Angelo Pio Rossi ◽  
Andrea Nass ◽  
Matteo Massironi

<p>The Geologic Mapping of Planetary Bodies (GMAP) project Integrates partners and outputs from two projects previously funded by the EU through Horizon 2020 (UPWARDS and PLANMAP) to deliver tools and services for geological mapping of any Solar System body.  Started in 2020, GMAP is developing an infrastructure to support future European missions in developing orbital acquisition strategies, rover deployment and traverses, and human exploration programs.  Part of GMAP deals with the study of current procedures for publishing planetary maps, and the development of new ones.   Since the Apollo era, geologic maps of the Moon and bodies of the solar system have been produced and disseminated by the United Stated Geologic Survey, Astrogeology Program, funded by NASA.  Being both USGS and NASA governmental organization of the same country, the coordination and the production of planetary maps followed a straightforward development from the beginning to the digital-era.  In their digital form, the US maps have been made available under the public domain.<br>At the international level, every country has its own space agency or office but no public domain planetary maps have been systematically made available yet in re-usable formats outside the US. In Europe, space programs can be either promoted by European Space Agency or by any one of the participating states' space agencies, which is not necessarily an EU member. This is not ideal for a coordinated work for geoscientific mapping or dissemination of unified planetary mapping products.<br>Within GMAP we are surveying existing licensing models, looking for a licensing system that guarantees dissemination and the re-use of planetary mapping, the maximum compatibility with the existing dataset and protects original creator rights.   We will report the status of our study and plans for the future.</p>


2020 ◽  
Author(s):  
Theodoros Sarris ◽  

<p>The Daedalus mission has been proposed to the European Space Agency (ESA) in response to the call for ideas for the Earth Observation programme’s Earth Explorers. It was selected in 2018 as one of three candidates for Earth Explorer 10, and is currently undergoing a Phase-0 Science and Requirements Consolidation Study. The goal of the mission is to quantify the key electrodynamic processes that determine the structure and composition of the Lower Thermosphere-Ionosphere (LTI), focusing in particular on processes related to ion-neutral coupling. Daedalus will perform in-situ measurements of plasma density and temperature, ion drift, neutral density and wind, ion and neutral composition, electric and magnetic fields and precipitating particles. An innovative preliminary mission design allows Daedalus to perform these measurements down to altitudes of 140 km and below. These measurements will quantify the amount of energy locally deposited in the upper atmosphere via Joule heating and energetic particle precipitation, estimates of which currently vary by orders of magnitude between models. At the same time, the instrumentation of Daedalus will enable exploration of the variability and dynamics of the LTI, as well as science questions related to connections between the LTI and the atmosphere below. Daedalus will thus study the most under-explored region of the Earth's environment, the "agnostophere", which is the gateway between Earth’s atmosphere and space. In this presentation an overview of the Daedalus Mission Concept will be given, including the status of the ongoing Phase-0 Study.</p>


Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


Sign in / Sign up

Export Citation Format

Share Document