Aeolus: ESA’s wind mission. Status and future challenges

Author(s):  
Tommaso Parrinello ◽  
Anne Grete Straume ◽  
Jonas Von Bismark ◽  
Sebastian Bley ◽  
Viet Duc Tran ◽  
...  

<p>The European Space Agency (ESA)’s wind mission, Aeolus, was launched on 22 August 2018. It is a member of the ESA Earth Explorer family and its main objective is to demonstrate the potential of Doppler wind Lidars in space for improving weather forecast and to understand the role of atmospheric dynamics in climate variability. Aeolus carries a single instrument called ALADIN: a high sophisticated spectral resolution Doppler wind Lidar which operates at 355 which is the first of its kind to be flown in space.</p><p>Aeolus provides profiles of single horizontal line-of-sight winds (primary product) in near-real-time (NRT), and profiles of atmospheric backscatter and extinction. The instrument samples the atmosphere from about 30 km down to the Earth’s surface, or down to optically thick clouds. The required precision of the wind observations is 1-2.5 m/s in the troposphere and 3-5 m/s in the stratosphere while the systematic error requirement be less than 0.7 m/s. The mission spin-off product includes information about aerosol and cloud layers. The satellite flies in a polar dusk/dawn orbit (6 am/pm local time), providing ~16 orbits per 24 hours with an orbit repeat cycle of 7 days. Global scientific payload data acquisition is guaranteed with the combined usage of Svalbard and Troll X-band receiving stations.</p><p>After almost three years in orbit and despite performance issues related to its instrument ALADIN, Aeolus has achieved most of its objectives. Positive impact on the weather forecast has been demonstrated by multiple NWP centres world-wide with four European meteorological centres now are assimilating Aeolus winds operationally. Other world-wide meteo centers wull start to assimilate data in 2021. The status of the Aeolus mission will be presented, including overall performance, planned operations and exploitation. Scope of the paper is also to inform about the programmatic highlights and future challenges.</p>

2020 ◽  
Author(s):  
Tommaso Parrinello ◽  
Anne Grete Straume ◽  
Jonas Von Bismark ◽  
Sebastian Bley ◽  
Viet Duc Tran ◽  
...  

<p>The European Space Agency (ESA)’s wind mission, Aeolus, was launched on 22 August 2018. Aeolus is a member of the ESA Earth Explorer family and its main objective is to demonstrate the potential of Doppler wind Lidars in space for improving weather forecast and to understand the role of atmospheric dynamics in climate variability. Aeolus carries a single instrument called ALADIN: a high sophisticated spectral resolution Doppler wind Lidar which operates at 355 which is the first of its kind to be flown in space. It provides profiles of single horizontal line-of-sight winds (primary product) in near-real-time (NRT), and profiles of atmospheric backscatter and extinction. The instrument samples the atmosphere from about 30 km down to the Earth’s surface, or down to optically thick clouds. The required precision of the wind observations is 1-2.5 m/s in the troposphere and 3-5 m/s in the stratosphere while the systematic error requirement be less than 0.7 m/s. The mission spin-off product includes information about aerosol and cloud layers. The satellite flies in a polar dusk/dawn orbit (6 am/pm local time), providing ~16 orbits per 24 hours with an orbit repeat cycle of 7 days. Global scientific payload data acquisition is guaranteed with the combined usage of Svalbard and Troll X-band receiving stations.</p><p>The status of the Aeolus mission will be provided, including its performance assessment, planned operations and exploitation in the near future. This comprises the outcome of the instrument in its early operation phase, calibration and validation activities and a general review of the main scientific findings. Scope of the paper is also to inform about the programmatic highlights and future challenges.</p>


2018 ◽  
Vol 176 ◽  
pp. 02021 ◽  
Author(s):  
Alexander Geiss ◽  
Uwe Marksteiner ◽  
Oliver Lux ◽  
Christian Lemmerz ◽  
Oliver Reitebuch ◽  
...  

By the end of 2017, the European Space Agency (ESA) will launch the Atmospheric laser Doppler instrument (ALADIN), a direct detection Doppler wind lidar operating at 355 nm. An important tool for the validation and optimization of ALADIN’s hardware and data processors for wind retrievals with real atmospheric signals is the ALADIN airborne demonstrator A2D. In order to be able to validate and test aerosol retrieval algorithms from ALADIN, an algorithm for the retrieval of atmospheric backscatter and extinction profiles from A2D is necessary. The A2D is utilizing a direct detection scheme by using a dual Fabry-Pérot interferometer to measure molecular Rayleigh signals and a Fizeau interferometer to measure aerosol Mie returns. Signals are captured by accumulation charge coupled devices (ACCD). These specifications make different steps in the signal preprocessing necessary. In this paper, the required steps to retrieve aerosol optical products, i. e. particle backscatter coefficient βp, particle extinction coefficient αp and lidar ratio Sp from A2D raw signals are described.


2021 ◽  
Author(s):  
Chih-Chun Chou ◽  
Paul J. Kushner ◽  
Stéphane Laroche ◽  
Zen Mariani ◽  
Peter Rodriguez ◽  
...  

Abstract. In August 2018, the European Space Agency launched the Aeolus satellite, whose Atmospheric LAser Doppler INstrument (ALADIN) is the first spaceborne Doppler wind lidar to regularly measure vertical profiles of horizontal line-of-sight (HLOS) winds with global sampling. This mission is intended to assess improvement to numerical weather prediction provided by wind observations in regions poorly constrained by atmospheric mass, such as the tropics, but also, potentially, in polar regions such as the Arctic where direct wind observations are especially sparse. There remain gaps in the evaluation of the Aeolus products over the Arctic region, which is the focus of this contribution. Here, an assessment of the Aeolus Level-2B wind product is carried out from measurement stations in Canada’s north, to the pan-Arctic, with Aeolus data being compared to Ka-band radar measurements at Iqaluit, Nunavut; to radiosonde measurements over Northern Canada; to Environment and Climate Change Canada (ECCC)’s short-range forecast; and to the reanalysis product, ERA5, from the European Centre for Medium-Range Weather Forecasts (ECMWF). Periods covered include the early phase during the first laser nominal flight model (FM-A; 2018-09 to 2018-10), the early phase during the second flight laser (FM-B; 2019-08 to 2019-09), and the mid-FM-B periods (2019-12 to 2020-01). The adjusted r-square between Aeolus and other local datasets are around 0.9, except for somewhat lower values in comparison with the ground-based radar, presumably due to limited sampling. This consistency degraded by about 10 % for the Rayleigh winds in the summer, presumably due to scattering from the solar background. Over the pan-Arctic, consistency, with correlation greater than 0.8, is found in the Mie channel from the planetary boundary layer to the lower stratosphere (near surface to 16 km a.g.l.) and in the Rayleigh channel from the troposphere to the stratosphere (2 km to 25 km a.g.l.). Zonal and meridional projections of the HLOS winds are separated to account for the systematic changes in HLOS winds arising from sampling wind components from different viewing orientations in the ascending and descending phases. In all cases, Aeolus standard deviations are found to be 20 % greater than those from ECCC-B and ERA5. We found that L2B estimated error product for Aeolus is coherent with the differences between Aeolus and the other datasets, and can be used as a guide for expected consistency. Thus, our work confirms the quality of the Aeolus dataset over the Arctic and shows that the new Aeolus L2B wind product provides a valuable addition to current wind products in regions such as the Arctic Ocean region where few direct wind observations have been available to date.


2021 ◽  
Author(s):  
Izumi Okabe ◽  
Kozo Okamoto

<p>The horizontal line of sight (HLOS) wind data from Aeolus Doppler Wind Lidar (DWL) is available from the European Space Agency (ESA) Earth Online Portal. The data quality after the mirror bias correction was investigated using data from July to September 2020. According to the first guess departure (observation minus background) statistics in Japan Meteorological Agency’s (JMA’s) global data assimilation (DA) system, the biases were very small for both  Rayleigh and Mie HLOS wind data after quality controlled. Significant positive impacts of Aeolus HLOS wind data assimilation in the global DA system on the analysis accuracy and forecasting scores were found in experiments with Rayleigh wind data under clear-sky condition and Mie wind data under cloudy condition. Improvement of tropical cyclone track forecasting was also found for the typhoons in the Northwest Pacific Ocean and for the hurricanes in the Atlantic Ocean. The details of results of data assessment and assimilation experiments will be shown in the presentation.</p>


2020 ◽  
Author(s):  
Erica Webb ◽  
Ben Wright ◽  
Marco Meloni ◽  
Jerome Bouffard ◽  
Tommaso Parrinello ◽  
...  

<p>Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.</p><p>CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community. </p><p>Since May 2019, the CryoSat ice products are generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). A reprocessing campaign is currently underway to reprocess the full mission dataset (July 2010 – May 2019) to Baseline-D.</p><p>The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this new Baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present).</p><p>Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio VEGA UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.</p><p>This poster provides an overview of the CryoSat data quality status and the QC activities performed by the QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.</p>


2020 ◽  
Author(s):  
Pepijn Veefkind ◽  
Ilse Aben ◽  
Angelika Dehn ◽  
Quintus Kleipool ◽  
Diego Loyola ◽  
...  

<p>The Copernicus Sentinel 5 Precursor (S5P) is the first of the Sentinel satellites dedicated to the observation of the atmospheric composition, for climate, air quality and ozone monitoring applications. The payload of S5P is TROPOMI (TROPOspheric Monitoring Instrument), a spectrometer covering spectral bands in ultraviolet, visible, near infrared and shortwave infrared, which was developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI has a wide swath of 2600 km, enabling daily global coverage, in combination with a high spatial resolution of about 3.5 x 5.5 km<sup>2</sup> (7 x 5.5 km<sup>2</sup> for the SWIR band).</p><p>S5P was successfully launched on 13 October 2017 and following a six-month commissioning phase, the operational data stream started at the end of April 2018. All of the TROPOMI operational data products have been released, with the exception of the ozone profile, which is planned to become available with the next major release[AR1]  of the Level 1B data. In addition to the operational data products, new research products are also being developed.</p><p>In this contribution, the status of TROPOMI and its data products will be presented. Results for observations of recent events will be provided, along with an outlook on the next release of the data products.</p><div> <div> <div> </div> </div> </div>


2016 ◽  
Author(s):  
Nick Nelms ◽  
Kyriaki Minoglou ◽  
Alessandra Ciapponi ◽  
Thibaut Prod'homme ◽  
Roland Meynart ◽  
...  

Author(s):  
João Pereira do Carmo ◽  
Geraud de Villele ◽  
Kotska Wallace ◽  
Alain Lefebvre ◽  
Kaustav Ghose ◽  
...  

ATLID (ATmospheric LIDar) is the atmospheric backscatter LIDAR (Light Detection and Ranging) on board of the EarthCARE (Earth Cloud, Aerosol and Radiation Explorer) mission, the sixth Earth Explorer Mission of the ESA (European Space Agency) Living Planet Programme [1-5]. ATLID’s purpose is to provide vertical profiles of optically thin cloud and aerosol layers, as well as the altitude of cloud boundaries [6-10]. In order to achieve this objective ATLID emits short duration laser pulses in the UV, at a repetition rate of 51 Hz, while pointing in a near nadir direction along track of the satellite trajectory. The atmospheric backscatter signal is then collected by its 620 mm aperture telescope, filtered through the optics of the instrument focal plane assembly, in order to separate and measure the atmospheric Mie and Rayleigh scattering signals. With the completion of the full instrument assembly in 2019, ATLID has been subjected to an ambient performance test campaign, followed by a successful environmental qualification test campaign, including performance calibration and characterization in thermal vacuum conditions. In this paper the design and operational principle of ATLID is recalled and the major performance test results are presented, addressing the main key receiver and emitter characteristics. Finally, the estimated instrument, in-orbit, flight predictions are presented; these indicate compliance of the ALTID instrument performance against its specification and that it will meet its mission science objectives for the EarthCARE mission, to be launched in 2023.


2021 ◽  
Vol 14 (11) ◽  
pp. 7255-7275
Author(s):  
Hironori Iwai ◽  
Makoto Aoki ◽  
Mitsuru Oshiro ◽  
Shoken Ishii

Abstract. The first space-based Doppler wind lidar (DWL) on board the Aeolus satellite was launched by the European Space Agency (ESA) on 22 August 2018 to obtain global profiles of horizontal line-of-sight (HLOS) wind speed. In this study, the Raleigh-clear and Mie-cloudy winds for periods of baseline 2B02 (from 1 October to 18 December 2018) and 2B10 (from 28 June to 31 December 2019 and from 20 April to 8 October 2020) were validated using 33 wind profilers (WPRs) installed all over Japan, two ground-based coherent Doppler wind lidars (CDWLs), and 18 GPS radiosondes (GPS-RSs). In particular, vertical and seasonal analyses were performed and discussed using WPR data. During the baseline 2B02 period, a positive bias was found to be in the ranges of 0.5 to 1.7 m s−1 for Rayleigh-clear winds and 1.6 to 2.4 m s−1 for Mie-cloudy winds using the three independent reference instruments. The statistical comparisons for the baseline 2B10 period showed smaller biases, −0.8 to 0.5 m s−1 for the Rayleigh-clear and −0.7 to 0.2 m s−1 for the Mie-cloudy winds. The vertical analysis using WPR data showed that the systematic error was slightly positive in all altitude ranges up to 11 km during the baseline 2B02 period. During the baseline 2B10 period, the systematic errors of Rayleigh-clear and Mie-cloudy winds were improved in all altitude ranges up to 11 km as compared with the baseline 2B02. Immediately after the launch of Aeolus, both Rayleigh-clear and Mie-cloudy biases were small. Within the baseline 2B02, the Rayleigh-clear and Mie-cloudy biases showed a positive trend. For the baseline 2B10, the Rayleigh-clear wind bias was generally negative for all months except August 2020, and Mie-cloudy wind bias gradually fluctuated. Both Rayleigh-clear and Mie-cloudy biases did not show a marked seasonal trend and approached zero towards September 2020. The dependence of the Rayleigh-clear wind bias on the scattering ratio was investigated, showing that there was no significant bias dependence on the scattering ratio during the baseline 2B02 and 2B10 periods. Without the estimated representativeness error associated with the comparisons using WPR observations, the Aeolus random error was determined to be 6.7 (5.1) and 6.4 (4.8) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively. The main reason for the large Aeolus random errors is the lower laser energy compared to the anticipated 80 mJ. Additionally, the large representativeness error of the WPRs is probably related to the larger Aeolus random error. Using the CDWLs, the Aeolus random error estimates were in the range of 4.5 to 5.3 (2.9 to 3.2) and 4.8 to 5.2 (3.3 to 3.4) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively. By taking the GPS-RS representativeness error into account, the Aeolus random error was determined to be 4.0 (3.2) and 3.0 (2.9) m s−1 for Rayleigh-clear (Mie-cloudy) winds during the baseline 2B02 and 2B10 periods, respectively.


2021 ◽  
Author(s):  
Erica Webb ◽  
Jenny Marsh ◽  
Laura Benzan Valette ◽  
Jerome Bouffard ◽  
Tommaso Parrinello ◽  
...  

<p>Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.</p><p>CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community.</p><p>Since May 2019, the CryoSat ice products have been generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). The Baseline-D reprocessing campaign completed in May 2020, and the full mission Baseline-D dataset is now available to users (July 2010 – present). The next major processor upgrade, Baseline-E, is already under development and following testing and refinement is anticipated to be operational in Q3 2021.</p><p>The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present). Preparations are underway for the next major processor upgrade, Baseline-D.</p><p>Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.</p><p>This poster provides an overview of the CryoSat data quality status and the QC activities performed by the IDEAS-QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.</p>


Sign in / Sign up

Export Citation Format

Share Document