Sentinel 5 Precursor: Status of TROPOMI and the Operational Data Products

Author(s):  
Pepijn Veefkind ◽  
Ilse Aben ◽  
Angelika Dehn ◽  
Quintus Kleipool ◽  
Diego Loyola ◽  
...  

<p>The Copernicus Sentinel 5 Precursor (S5P) is the first of the Sentinel satellites dedicated to the observation of the atmospheric composition, for climate, air quality and ozone monitoring applications. The payload of S5P is TROPOMI (TROPOspheric Monitoring Instrument), a spectrometer covering spectral bands in ultraviolet, visible, near infrared and shortwave infrared, which was developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI has a wide swath of 2600 km, enabling daily global coverage, in combination with a high spatial resolution of about 3.5 x 5.5 km<sup>2</sup> (7 x 5.5 km<sup>2</sup> for the SWIR band).</p><p>S5P was successfully launched on 13 October 2017 and following a six-month commissioning phase, the operational data stream started at the end of April 2018. All of the TROPOMI operational data products have been released, with the exception of the ozone profile, which is planned to become available with the next major release[AR1]  of the Level 1B data. In addition to the operational data products, new research products are also being developed.</p><p>In this contribution, the status of TROPOMI and its data products will be presented. Results for observations of recent events will be provided, along with an outlook on the next release of the data products.</p><div> <div> <div> </div> </div> </div>

2020 ◽  
Author(s):  
Grégory Bazalgette Courrèges-Lacoste ◽  
Norrie Wright ◽  
Ben Veihelmann ◽  
Berit Ahlers ◽  
Olivier Le Rille ◽  
...  

<p>The Copernicus missions Sentinel-4 (S4) and Sentinel-5 (S5) will carry out atmospheric composition observations on an operational long-term basis to serve the needs of the Copernicus Atmosphere Monitoring Service (CAMS) and the Copernicus Climate Change Service (C3S).</p><p>Building on the heritage from instruments such as GOME, SCIAMACHY, GOME-2, and OMI, S4 is an imaging spectrometer instruments covering wide spectral bands in the ultraviolet and visible wavelength range (305-500nm) and near infrared wavelength range (750-775 nm). S4 will observe key air quality parameters with a pronounced temporal variability by measuring NO<sub>2</sub>, O<sub>3</sub>, SO<sub>2</sub>, HCHO, CHOCHO, and aerosols over Europe with an hourly revisit time.</p><p>A series of two S4 instruments will be embarked on the geostationary Meteosat Third Generation-Sounder (MTG-S) satellites. S4 establishes the European component of a constellation of geostationary instruments with a strong air quality focus, together with the NASA mission TEMPO and the Korean mission GEMS.</p><p>This paper will address the development status of the L1b Operational Processor (L1OPS) by EUMETSAT and the supporting L1b reference processor (L1RP) developed by ESA; In dedicated cases (e.g. CTI, Non-linearity signal loss, ...) the algorithms input from the S4 Industrial Prime have been used. The paper will also provide an overview of the status of the Level 2 processor developed by ESA for integration into the EUMETSAT MTG-S ground segment.</p>


2021 ◽  
Author(s):  
Mikael Granvik ◽  
Tuomas Lehtinen ◽  
Andrea Bellome ◽  
Joan-Pau Sánchez

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>Icarus is a mission concept designed to record the activity of an asteroid during a close encounter with the Sun. The primary science goal of the mission is to unravel the nontrivial mechanism(s) that destroy asteroids on orbits with small perihelion distances. Understanding the destruction mechanism(s) allows us to constrain the bulk composition and interior structure of asteroids in general. The Icarus mission does not only aim to achieve its science goals but also functions as a technical demonstration of what a low-cost space mission can do. The proposed space segment will include a single spacecraft capable of surviving and operating in the harsh environment near the Sun. The spacecraft design relies on the heritage of missions such as Rosetta, MESSENGER, Parker Solar Probe, BepiColombo, and Solar Orbiter. The spacecraft will rendezvous with an asteroid during its perihelion passage and records the changes taking place on the asteroid’s surface. The primary scientific payload has to be capable of imaging the asteroid’s surface in high resolution using visual and near-infrared channels as well as collecting and analyzing particles that are ejected from the asteroid. The payload bay also allows for additional payloads relating to, for example, solar research. The Icarus spacecraft and the planned payloads have high technology readiness levels and the mission is aimed to fit the programmatic and cost constraints of the F1 mission (Comet Interceptor) by the European Space Agency. Considering the challenging nature of the Icarus trajectory and the fact that the next F-class mission opportunity (F2) is yet to be announced, we conclude that Icarus is feasible as an F-class mission when certain constraints such as a suitable launch configuration are met (e.g., if EnVision is selected as M5). A larger mission class, such as the M class by the European Space Agency, would be feasible in all circumstances.</p> </div> </div> </div>


Author(s):  
G. Fonteix ◽  
M. Swaine ◽  
M. Leras ◽  
Y. Tarabalka ◽  
S. Tripodi ◽  
...  

Abstract. The understanding of the Earth through global land monitoring from satellite images paves the way towards many applications including flight simulations, urban management and telecommunications. The twin satellites from the Sentinel-2 mission developed by the European Space Agency (ESA) provide 13 spectral bands with a high observation frequency worldwide. In this paper, we present a novel multi-temporal approach for land-cover classification of Sentinel-2 images whereby a time-series of images is classified using fully convolutional network U-Net models and then coupled by a developed probabilistic algorithm. The proposed pipeline further includes an automatic quality control and correction step whereby an external source can be introduced in order to validate and correct the deep learning classification. The final step consists of adjusting the combined predictions to the cloud-free mosaic built from Sentinel-2 L2A images in order for the classification to more closely match the reference mosaic image.


2019 ◽  
Vol 491 (2) ◽  
pp. 1673-1689 ◽  
Author(s):  
A Slemer ◽  
M Zusi ◽  
E Simioni ◽  
V Da Deppo ◽  
C Re ◽  
...  

ABSTRACT BepiColombo is the fifth cornerstone mission of the European Space Agency (ESA) dedicated to study the Mercury planet. The BepiColombo spacecraft comprises two science modules: the Mercury Planetary Orbiter (MPO) realized by ESA and the Mercury Magnetospheric Orbiter provided by the Japan Aerospace Exploration Agency. The MPO is composed by 11 instruments, including the ‘Spectrometer and Imagers for MPO BepiColombo Integrated Observatory System’ (SIMBIOSYS). The SIMBIOSYS suite includes three optical channels: a Stereoscopic Imaging Channel, a High Resolution Imaging Channel, and a Visible and near Infrared Hyperspectral Imager. SIMBIOSYS will characterize the hermean surface in terms of surface morphology, volcanism, global tectonics, and chemical composition. The aim of this work is to describe a tool for the radiometric response prediction of the three SIMBIOSYS channels. Given the spectral properties of the surface, the instrument characteristics, and the geometrical conditions of the observation, the realized SIMBIOSYS simulator is capable of estimating the expected signal and integration times for the entire mission lifetime. In the simulator the spectral radiance entering the instrument optical apertures has been modelled using a Hapke reflectance model implementing the parameters expected for the hermean surface. The instrument performances are simulated by means of calibrated optical and detectors responses. The simulator employs the SPICE (Spacecraft, Planet, Instrument, C-matrix, Environment) toolkit software, which allows us to know for each epoch the exact position of the MPO with respect to the planet surface and the Sun.


2021 ◽  
Author(s):  
Tommaso Parrinello ◽  
Anne Grete Straume ◽  
Jonas Von Bismark ◽  
Sebastian Bley ◽  
Viet Duc Tran ◽  
...  

<p>The European Space Agency (ESA)’s wind mission, Aeolus, was launched on 22 August 2018. It is a member of the ESA Earth Explorer family and its main objective is to demonstrate the potential of Doppler wind Lidars in space for improving weather forecast and to understand the role of atmospheric dynamics in climate variability. Aeolus carries a single instrument called ALADIN: a high sophisticated spectral resolution Doppler wind Lidar which operates at 355 which is the first of its kind to be flown in space.</p><p>Aeolus provides profiles of single horizontal line-of-sight winds (primary product) in near-real-time (NRT), and profiles of atmospheric backscatter and extinction. The instrument samples the atmosphere from about 30 km down to the Earth’s surface, or down to optically thick clouds. The required precision of the wind observations is 1-2.5 m/s in the troposphere and 3-5 m/s in the stratosphere while the systematic error requirement be less than 0.7 m/s. The mission spin-off product includes information about aerosol and cloud layers. The satellite flies in a polar dusk/dawn orbit (6 am/pm local time), providing ~16 orbits per 24 hours with an orbit repeat cycle of 7 days. Global scientific payload data acquisition is guaranteed with the combined usage of Svalbard and Troll X-band receiving stations.</p><p>After almost three years in orbit and despite performance issues related to its instrument ALADIN, Aeolus has achieved most of its objectives. Positive impact on the weather forecast has been demonstrated by multiple NWP centres world-wide with four European meteorological centres now are assimilating Aeolus winds operationally. Other world-wide meteo centers wull start to assimilate data in 2021. The status of the Aeolus mission will be presented, including overall performance, planned operations and exploitation. Scope of the paper is also to inform about the programmatic highlights and future challenges.</p>


2016 ◽  
Author(s):  
Nick Nelms ◽  
Kyriaki Minoglou ◽  
Alessandra Ciapponi ◽  
Thibaut Prod'homme ◽  
Roland Meynart ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
pp. 409-427 ◽  
Author(s):  
Diego G. Loyola ◽  
Sebastián Gimeno García ◽  
Ronny Lutz ◽  
Athina Argyrouli ◽  
Fabian Romahn ◽  
...  

Abstract. This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.


2018 ◽  
Vol 11 (1) ◽  
pp. 473-487 ◽  
Author(s):  
Amirmahdi Zarboo ◽  
Stefan Bender ◽  
John P. Burrows ◽  
Johannes Orphal ◽  
Miriam Sinnhuber

Abstract. We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard the European Space Agency Envisat satellite observes upwelling radiances in limb-viewing geometry during its special MLT mode over the range 50–150 km. In this study we use the limb observations in the visible (595–811 nm) and near-infrared (1200–1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VERs of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) emissions show additional high values at polar latitudes during winter and spring. These additional high values are presumably related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSWs). Accurate measurements of the O2(1Σ) and O2(1Δ) airglow, provided that the mechanism of their production is understood, yield valuable information about both the chemistry and dynamics in the MLT. For example, they can be used to infer the amounts and distribution of ozone, solar heating rates, and temperature in the MLT.


2019 ◽  
Author(s):  
Michel M. Verstraete ◽  
Linda A. Hunt ◽  
Hugo De Lemos ◽  
Larry Di Girolamo

Abstract. The Multi-angle Imaging SpectroRadiometer (MISR) is one of the five instruments hosted on-board the NASA Terra platform, launched on 18 December 1999. This instrument has been operational since 24 February 2000 and is still acquiring Earth Observation data as of this writing. The primary missions of MISR are to document the state and properties of the atmosphere, and in particular the clouds and aerosols it contains, as well as the planetary surface, on the basis of 36 data channels gathered by each of its nine cameras (pointing in different directions along the orbital track) in four spectral bands (blue, green, red and near-infrared). The Radiometric Camera-by-Camera Cloud Mask (RCCM) is derived from the calibrated measurements at the nominal top of the atmosphere, and is provided separately for each of the nine cameras. This RCCM data product is permanently archived at the NASA Atmospheric Science Data Center (ASDC) in Langley, VA, USA and is openly accessible (Diner et al., 1999 and https://doi.org/10.5067/Terra/MISR/MIRCCM_L2.004). For various technical reasons described in this paper, this RCCM product exhibits missing data, even though an estimate of the clear or cloudy status of the environment at each individual observed location can be deduced from the available measurements. The aims of this paper are (1) to describe how to replace most missing values by estimates and (2) to briefly describe the software to process MISR RCCM data products, which is openly available to the community from the GitHub web site (https://github.com/mmverstraete or https://doi.org/10.5281/zenodo.3240018). Limited amounts of updated MISR RCCM data products are also archived in South Africa and can be made available upon request.


2014 ◽  
Vol 56 ◽  
Author(s):  
Stefano Casadio ◽  
Angelika Dehn ◽  
Thorsten Fehr ◽  
Bojan R. Bojkov

<p>During the last 18 years, the European Space Agency (ESA) has provided the scientific community with a large amount of valuable atmospheric composition data produced by a series of instruments, starting with GOME [Burrows et al., 1999], on-board the ERS-2 satellite (1995-2011), and followed by the GOMOS [Kyrola et al., 2004], MIPAS [Fischer et al., 2008], and the SCIAMACHY [Bovensmann et al., 1999], all flying on-board the Envisat satellite (2002-2012). These observations will be continued by the Sentinel-5 Precursor, Sentinel-4 and Sentinel-5 and extended the EarthCARE and ADM missions for aerosols and clouds. […]</p>


Sign in / Sign up

Export Citation Format

Share Document