Reusable titanium nitride plasmonic microstructures for intracellular delivery (Conference Presentation)

Author(s):  
Alexander J. Raun ◽  
Nabiha Saklayen ◽  
Christine M. Zgrabik ◽  
Daryl I. Vulis ◽  
Marinna Madrid ◽  
...  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexander Raun ◽  
Nabiha Saklayen ◽  
Christine Zgrabik ◽  
Weilu Shen ◽  
Marinna Madrid ◽  
...  

Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


1989 ◽  
Vol 50 (C7) ◽  
pp. C7-169-C7-173
Author(s):  
R.C BUSCHERT ◽  
P. N. GIBSON ◽  
W. GISSLER ◽  
J. HAUPT ◽  
T. A. CRABB
Keyword(s):  

1980 ◽  
Vol 41 (5) ◽  
pp. 558-566
Author(s):  
O. Yu Elagina ◽  
◽  
D.O. Kolbas ◽  
A.G. Buklakov ◽  
N. Derr ◽  
...  

2019 ◽  
Author(s):  
Rohit Bhadoria ◽  
Kefeng Ping ◽  
Christer Lohk ◽  
Ivar Järving ◽  
Pavel Starkov

<div> <div> <div> <p>Conjugation techniques are central to improving intracellular delivery of bioactive small molecules. However, tracking and assessing the overall biological outcome of these constructs remains poorly understood. We addressed this issue by having developed a focused library of heterobivalent constructs based on Rho kinase inhibitors to probe various scenarios. By comparing induction of a phenotype of interest vs. cell viability vs. cellular uptake, we demonstrate that such conjugates indeed lead to divergent cellular outcomes. </p> </div> </div> </div>


2007 ◽  
Vol 3 (4) ◽  
pp. 329-338 ◽  
Author(s):  
Yah-el Har-el ◽  
Yoshinori Kato

Author(s):  
M. A. Tit ◽  
S. N. Belyaev

This article considers the research results of the effect of stoichiometry on the properties of titanium nitride thin-film coatings of the float and electrostatic gyroscopes. It presents the results of tests of such mechanical and optical characteristics of titanium nitride thin-film structures as microhardness, resistance to wear and friction, and image contrast determined by the reflection coefficients of a titanium nitride base surface and a raster pattern formed by local laser oxidation. When making a rotor of a cryogenic gyroscope, the prospects of use and technological methods for the formation of functional surface structures of niobium carbide and nitride are considered. It is shown that during the formation of coatings of the required composition, the most important is the thermodynamic estimation of possible interactions. These interactions allow us to accomplish the structural-phase modification of the material, which is determined by the complex of possible topochemical reactions leading to the formation of compounds, including non-stoichiometric composition.


Sign in / Sign up

Export Citation Format

Share Document