Time-resolved microscopy using variable probe wavelengths for ultra-short pulse interaction (Conference Presentation)

Author(s):  
Klaus Bergner ◽  
Malte Kumkar ◽  
Andreas Tünnermann ◽  
Stefan Nolte ◽  
Brian Seyfarth
2008 ◽  
Author(s):  
Meg Mahat ◽  
Tae Y. Choi ◽  
Nasrasadani Seifolah ◽  
Arup Neogi

Laser-induced breakdown spectroscopy (LIBS) can provide a noncontact way of inspecting a specimen including distinct signature of atomic composition of the sample. Ultra-short pulse laser enables characterization of any materials by utilizing the multiphoton process, which is a dominant carrier generation mechanism for dielectric materials. Additionally, femtosecond LIBS yields low background and better defined atomic lines than the nanosecond LIBS. We have performed a time-resolved emission intensity measurement for an iron oxide (Fe3O4, magnetite). The emission intensity has the peak value at 100 ps time delay, signifying that the succeeding pump beam is interacting with the plasma generated in the vicinity of the sample by the preceding beam. The dual pulses significantly enhance the atomic emission as compared to single pulse excitation and enables ultrafast time-resolved spectroscopy.


2008 ◽  
Vol 1076 ◽  
Author(s):  
Matthew Lumb ◽  
Edmund Clarke ◽  
Dominic Farrell ◽  
Michael Damzen ◽  
Ray Murray

ABSTRACTWe have designed and grown a series of quantum dot semiconductor saturable absorber mirrors (QD-SESAMs) for a range of operating wavelengths, incorporating innovative design and processing features to optimise the device performance. Using a range of reflectivity studies, ellipsometric measurements and both time-integrated and time-resolved spectroscopic studies, we have conducted detailed investigations of device performance. Extensive modelling work of dielectric multilayers has been undertaken which supports our experimental findings and allows us to understand and design novel structures in order to improve and tailor device characteristics, including dielectric capping and non-normal incidence. We demonstrate samples designed for operation with the higher excited-states of the QDs which produced a self-starting train of mode-locked pulses with a temporal duration of 200 ps at a repetition rate of 78 MHz in a Nd:YVO4 solid-state laser. We also present SESAMs incorporating electronically coupled QD bilayers, allowing long wavelength operation.


2001 ◽  
Vol 12 (11) ◽  
pp. 1841-1846 ◽  
Author(s):  
A Rousse ◽  
C Rischel ◽  
S Fourmaux ◽  
I Uschmann ◽  
E Förster ◽  
...  

Author(s):  
F. Beaudoin ◽  
P. Perdu ◽  
C. DeNardi ◽  
R. Desplats ◽  
J. Lopez ◽  
...  

Abstract Ultra-short pulse laser ablation is applied to IC backside sample preparation. It is contact-less, non-thermal, precise and can ablate the various types of material present in IC packages. This study concerns the optimization of ultra-short pulse laser ablation for silicon thinning. Uncontrolled silicon roughness and poor uniformity of the laser thinned cavity needed to be tackled. Special care is taken to minimize the silicon RMS roughness to less than 1µm. Application to sample preparation of 256Mbit devices is presented.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 787-789
Author(s):  
Marcel Simons ◽  
Till Rusche ◽  
Tobias Valentino ◽  
Tim Radel ◽  
Frank Vollertsen

Die Ultrakurzpuls (UKP)-laserbasierte Bearbeitung erlaubt die Herstellung von Netzstrukturen mit verschiedenen Transmissionsgraden. Vorteile der UKP-laserbasierten Herstellung der Netze liegen vor allem in der hohen Präzision und Bearbeitungsgeschwindigkeit. Die UKP-Laserbearbeitung ermöglicht die Herstellung von Netzen aus Aluminium in hoher Qualität, bezogen auf die Stegbreitenabweichung von < 8 µm, mit variablen Transmissionsgraden. Ultra-short pulse (USP) laser based processing enables the production of mesh structures with different degrees of transmission. The advantages of USP-based production of mesh structures are mainly the high precision and processing speed. USP laser processing enables the production of meshes of aluminum in high quality, with respect to the mesh width deviation of < 8 µm with variable transmission degrees.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Sergei N. Smetanin ◽  
Michal Jelínek ◽  
Dmitry P. Tereshchenko ◽  
Mikhail N. Ershkov ◽  
Václav Kubeček

We propose and study the conditions of zero-dispersion phase matching for parametric Raman interactions in birefringent crystals differing by anisotropy of zero-dispersion wavelength and allowing for the spectral tuning of the zero-dispersion phase-matching condition. We choose a highly birefringent crystal of calcite having a wide zero-dispersion anisotropy range for the demonstration of new effects of laser pulse shortening in parametric Raman lasers with spectrally tunable zero-dispersion phase matching. We demonstrate the anti-Stokes (1168 nm) and multi-Stokes (1629 nm) picosecond pulse shortening and self-separation of single 80-ps ultra-short pulse from the zero-dispersion phase-matched parametric Raman lasers that are based on the calcite crystal without using any electro-optical device.


1994 ◽  
Author(s):  
Ronnie Shepherd ◽  
Rex Booth ◽  
Dwight Price ◽  
Rosemary Walling ◽  
Richard More ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document