Application of wearable optical coherence tomography (OCT) and loop-mediated isothermal amplification (LAMP) techniques for in situ real-time field inspection of apple Marssonina blotch disease

2017 ◽  
Author(s):  
Ruchire Eranga Wijesinghe ◽  
Seung-Yeol Lee ◽  
Naresh Kumar Ravichandran ◽  
Muhammad Faizan Shirazi ◽  
Sangyeop Han ◽  
...  
2013 ◽  
Vol 06 (02) ◽  
pp. 1350015 ◽  
Author(s):  
JONATHAN G. SUN ◽  
STEVEN G. ADIE ◽  
ERIC J. CHANEY ◽  
STEPHEN A. BOPPART

Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely used to identify breast cancer pathology. Recent advances in optical coherence tomography (OCT) have enabled its use for the intraoperative assessment of surgical margins during breast cancer surgery. While each modality offers distinct contrast of normal and pathological features, there is an essential need to correlate image-based features between the two modalities to take advantage of the diagnostic capabilities of each technique. We compare OCT to X-ray images of resected human breast tissue and correlate different tissue features between modalities for future use in real-time intraoperative OCT imaging. X-ray imaging (specimen radiography) is currently used during surgical breast cancer procedures to verify tumor margins, but cannot image tissue in situ. OCT has the potential to solve this problem by providing intraoperative imaging of the resected specimen as well as the in situ tumor cavity. OCT and micro-CT (X-ray) images are automatically segmented using different computational approaches, and quantitatively compared to determine the ability of these algorithms to automatically differentiate regions of adipose tissue from tumor. Furthermore, two-dimensional (2D) and three-dimensional (3D) results are compared. These correlations, combined with real-time intraoperative OCT, have the potential to identify possible regions of tumor within breast tissue which correlate to tumor regions identified previously on X-ray imaging (mammography or specimen radiography).


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 308
Author(s):  
Sirirat Wachiralurpan ◽  
Isaratat Phung-On ◽  
Narong Chanlek ◽  
Supatra Areekit ◽  
Kosum Chansiri ◽  
...  

Functionalized DNA sequences are promising sensing elements to combine with transducers for bio-sensing specific target microbes. As an application example, this paper demonstrates in situ detection of loop-mediated isothermal amplification products by hybridizing them with thiolated-ssDNA covalently anchored on the electrodes of a quartz crystal microbalance (QCM). Such hybridization leads to a frequency signal, which is suitable for monitoring real-time LAMP amplification based on mass-sensing: it detects interactions between the complementary nucleobases of LAMP products in solution and the thiolated-ssDNA probe sequence on the gold surface. Target DNA LAMP products cause irreversible frequency shifts on the QCM surfaces during hybridization in the kHz range, which result from both changes in mass and charge on the electrode surface. In order to confirm the LAMP assay working in the QCM sensing system at elevated temperature, the sky blue of positive LAMP products solution was achieved by using the Hydroxy Naphthol Blue (HNB) and agarose gel electrophoresis. Since on-QCM sensing of DNA hybridization leads to irreversible sensor responses, this work shows characterization by X-ray photoelectron spectroscopy (XPS) core spectra of S2p, N1s, Mg1s, P2p and C1s. XPS results confirmed that indeed both DNA and by-products of LAMP attached to the surface. Listeria monocytogenes DNA served to study in-situ detection of amplified LAMP products on DNA-functionalized surfaces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chenchen Ren ◽  
Xianxu Zeng ◽  
Zhongna Shi ◽  
Chunyan Wang ◽  
Huifen Wang ◽  
...  

AbstractIn this prospective study of an in-vivo cervical examination using optical coherence tomography (OCT), we evaluated the diagnostic value of non-invasive and real-time OCT in cervical precancerous lesions and cancer diagnosis, and determined the characteristics of OCT images. 733 patients from 5 Chinese hospitals were inspected with OCT and colposcopy-directed biopsy. The OCT images were compared with the histological sections to find out the characteristics of various categories of lesions. The OCT images were also interpreted by 3 investigators to make a 2-class classification, and the results were compared against the pathological results. Various structures of the cervical tissue were clearly observed in OCT images, which matched well with the corresponding histological sections. The OCT diagnosis results delivered a sensitivity of 87.0% (95% confidence interval, CI 82.2–90.7%), a specificity of 84.1% (95% CI 80.3–87.2%), and an overall accuracy of 85.1%. Both good consistency of OCT images and histological images and satisfactory diagnosis results were provided by OCT. Due to its features of non-invasion, real-time, and accuracy, OCT is valuable for the in-vivo evaluation of cervical lesions and has the potential to be one of the routine cervical diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document