Potential inundated coastal area estimation in Shanghai with multi-platform SAR and altimetry data

Author(s):  
Guanyu Ma ◽  
Tianliang Yang ◽  
Julia Kubanek ◽  
Qing Zhao ◽  
Hongbin Dong ◽  
...  
2018 ◽  
Vol 50 (2) ◽  
pp. 162
Author(s):  
Isna Uswatun Khasanah

The information of sea level rise was needed in the Indonesia as archipelago country to management risk and development coastal area. This research study took in West Sumatra waters, because the majority people have lived in coastal area and some areas is located below 100 m above Mean Sea Level (MSL). The sea level data was taken from multi-satellite altimetry, they are Topex/Poseidon, Jason-1, and Jason-2. The period of data started from 1993 until 2015.Preliminary data processing of satellite altimetry was done by global test and post-processing of satellite altimetry data. The sea level rise analysis done by linear regression methods. Linear regression formula of sea level rise in West Sumatra Waters during the period was  y = 1.586 + 0.0000113x. The change of sea level during period 1993 until 2015 was 3.394 cm with mean sea level rise value was 1.35 mm/year


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1265-1281 ◽  
Author(s):  
Ivan Manso-Narvarte ◽  
Ainhoa Caballero ◽  
Anna Rubio ◽  
Claire Dufau ◽  
Florence Birol

Abstract. Land-based coastal high-frequency (HF) radar systems provide operational measurements of coastal surface currents (within 1–3 m depth) with high spatial (300 m–10 km) and temporal (≤1 h) sampling resolutions, while the near-continuous altimetry missions provide information, from 1993 until today, on geostrophic currents in the global ocean with typical along-track and temporal sampling resolutions of >7 km and >9 days, respectively. During the last years, the altimetry community has made a step forward in improving these data in the coastal area, where the data present lower quality than in the open ocean. The combination of HF radar and altimetry measurements arises as a promising strategy to improve the continuous monitoring of the coastal area (e.g. by expanding the measurements made by HF radars to adjacent areas covered by the altimetry or by validating/confirming improvements brought by specific coastal algorithms or new altimeter missions). A first step towards this combination is the comparison of both data sets in overlapping areas. In this study, a HF radar system and two Jason-2 satellite altimetry products with different processing are compared over the period from 1 January 2009 to 24 July 2015. The results provide an evaluation of the performance of different coastal altimetry data sets within the study area and a better understanding of the ocean variability contained in the HF radar and altimetry data sets. Both observing systems detect the main mesoscale processes within the study area (the Iberian Poleward Current and mesoscale eddies), and the highest correlations between radar and altimetry (up to 0.64) occur in the slope where the Iberian Poleward Current represents a significant part of the variability in the circulation. Besides, the use of an Ekman model, to add the wind-induced current component to the altimetry-derived geostrophic currents, increases the agreement between both data sets (increasing the correlation by around 10 %).


Atmosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 123
Author(s):  
Evgueni Kassianov ◽  
James Barnard ◽  
Connor Flynn ◽  
Laura Riihimaki ◽  
Larry Berg ◽  
...  

SIMBIOSA ◽  
2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Yarsi Efendi ◽  
Dahrul Aman Harahap

Structure and physiognomy of mangrove strongly influenced by the zonation that occurred in the area of mangroves growth. The differences of zona growth will effect  to differences in the structure and composition of vegetation. There are three zones in the mangrove area, which is caused by the difference of flooding which also resulted in the difference to the salinity. The differences of growth zone will performed to the type vegetation performance (Physiognomy). This study is aims to prove the mangrove’s physiognomy that taken in the coastal area of Rempang Cate  Batam, on March 2014 to June 2014. This study was a survey with data collection using a vertical transect plots 100 m. Based on the research that has been done obtained difference vegetation physiognomy stands for every level of growth in each zone growth. Proximally found 13 species of mangroves in 8 families. The results of the analysis of the vegetation on the trees growth level are, Ceriops decandra have the greatest significance important value 167.55% on sapling (juvenille ) level is dominated by Rhizophora apiculata 120%, and seedling growth level dominated by Rhizophora apiculata  186.80%. Keywords: Structure and physiognomy, mangrove zonation


2017 ◽  
Vol 10 (1) ◽  
pp. 57-62
Author(s):  
Uihwan KWAK ◽  
Wonkeun JANG ◽  
Inwoo HAN ◽  
Kyounghoon LEE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document