The Lyncean Compact Light Source: x-ray synchrotron radiation for analytical and imaging applications (Conference Presentation)

Author(s):  
Michael Feser
2020 ◽  
Vol 27 (5) ◽  
pp. 1395-1414 ◽  
Author(s):  
Benedikt Günther ◽  
Regine Gradl ◽  
Christoph Jud ◽  
Elena Eggl ◽  
Juanjuan Huang ◽  
...  

Inverse Compton scattering provides means to generate low-divergence partially coherent quasi-monochromatic, i.e. synchrotron-like, X-ray radiation on a laboratory scale. This enables the transfer of synchrotron techniques into university or industrial environments. Here, the Munich Compact Light Source is presented, which is such a compact synchrotron radiation facility based on an inverse Compton X-ray source (ICS). The recent improvements of the ICS are reported first and then the various experimental techniques which are most suited to the ICS installed at the Technical University of Munich are reviewed. For the latter, a multipurpose X-ray application beamline with two end-stations was designed. The beamline's design and geometry are presented in detail including the different set-ups as well as the available detector options. Application examples of the classes of experiments that can be performed are summarized afterwards. Among them are dynamic in vivo respiratory imaging, propagation-based phase-contrast imaging, grating-based phase-contrast imaging, X-ray microtomography, K-edge subtraction imaging and X-ray spectroscopy. Finally, plans to upgrade the beamline in order to enhance its capabilities are discussed.


2018 ◽  
Vol 24 (S1) ◽  
pp. 984-985 ◽  
Author(s):  
Benedikt Günther ◽  
Martin Dierolf ◽  
Regine Gradl ◽  
Elena Eggl ◽  
Christoph Jud ◽  
...  

Author(s):  
Kaye Morgan ◽  
Regine Gradl ◽  
Martin Dierolf ◽  
Christoph Jud ◽  
Benedikt Günther ◽  
...  

2020 ◽  
Vol 47 (10) ◽  
pp. 5183-5193 ◽  
Author(s):  
Karin Burger ◽  
Theresa Urban ◽  
Annique C. Dombrowsky ◽  
Martin Dierolf ◽  
Benedikt Günther ◽  
...  

2016 ◽  
Vol 23 (5) ◽  
pp. 1137-1142 ◽  
Author(s):  
Elena Eggl ◽  
Martin Dierolf ◽  
Klaus Achterhold ◽  
Christoph Jud ◽  
Benedikt Günther ◽  
...  

While large-scale synchrotron sources provide a highly brilliant monochromatic X-ray beam, these X-ray sources are expensive in terms of installation and maintenance, and require large amounts of space due to the size of storage rings for GeV electrons. On the other hand, laboratory X-ray tube sources can easily be implemented in laboratories or hospitals with comparatively little cost, but their performance features a lower brilliance and a polychromatic spectrum creates problems with beam hardening artifacts for imaging experiments. Over the last decade, compact synchrotron sources based on inverse Compton scattering have evolved as one of the most promising types of laboratory-scale X-ray sources: they provide a performance and brilliance that lie in between those of large-scale synchrotron sources and X-ray tube sources, with significantly reduced financial and spatial requirements. These sources produce X-rays through the collision of relativistic electrons with infrared laser photons. In this study, an analysis of the performance, such as X-ray flux, source size and spectra, of the first commercially sold compact light source, the Munich Compact Light Source, is presented.


COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 79-88
Author(s):  
A. CHEN ◽  
G. LIU ◽  
L. K. JIAN ◽  
HERBERT O. MOSER

X-ray lithography with synchrotron radiation is an important nanolithographic tool which has unique advantages in the production of high aspect ratio nanostructures. The optimum synchrotron radiation spectrum for nanometer scale X-ray lithography is normally in the range of 500 eV to 2 keV. In this paper, we present the main methods, equipment, process parameters and preliminary results of nanofabrication by proximity X-ray lithography within the nanomanufacturing program pursued by Singapore Synchrotron Light Source (SSLS). Nanostructures with feature sizes down to 200 nm and an aspect ratio up to 10 have been successfully achieved by this approach.


2001 ◽  
Author(s):  
John N. Corlett ◽  
S. DeSantis ◽  
N. Hartman ◽  
P. Heimann ◽  
R. LaFever ◽  
...  

2018 ◽  
Vol 24 (S2) ◽  
pp. 352-353
Author(s):  
Regine Gradl ◽  
Martin Dierolf ◽  
Lorenz Hehn ◽  
Benedikt Gunther ◽  
David Kutschke ◽  
...  

2021 ◽  
Vol 28 (2) ◽  
pp. 618-623
Author(s):  
Shotaro Tanaka ◽  
Shuto Suzuki ◽  
Tomohiro Mishima ◽  
Kazuhiro Kanda

Soft X-rays excite the inner shells of materials more efficiently than any other form of light. The investigation of synchrotron radiation (SR) processes using inner-shell excitation requires the beamline to supply a single-color and high-photon-flux light in the soft X-ray region. A new integrated computing multi-layered-mirror (MLM) monochromator was installed at beamline 07A (BL07A) of NewSUBARU, which has a 3 m undulator as a light source for irradiation experiments with high-photon-flux monochromatic light. The MLM monochromator has a high reflectivity index in the soft X-ray region; it eliminates unnecessary harmonic light from the undulator and lowers the temperature of the irradiated sample surfaces. The monochromator can be operated in a high vacuum, and three different mirror pairs are available for different experimental energy ranges; they can be exchanged without exposing the monochromator to the atmosphere. Measurements of the photon current of a photodiode on the sample stage indicated that the photon flux of the monochromatic beam was more than 1014 photons s−1 cm−2 in the energy range 80–400 eV and 1013 photons s−1 cm−2 in the energy range 400–800 eV. Thus, BL07A is capable of performing SR-stimulated process experiments.


Sign in / Sign up

Export Citation Format

Share Document