1060nm FDML laser with centimeter coherence length and 1.67 MHz sweep rate for full eye length and retinal ultra-widefield OCT

Author(s):  
Jan Philip Kolb ◽  
Julian Klee ◽  
Tom Pfeiffer ◽  
Robert Huber
Keyword(s):  
Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2019 ◽  
Author(s):  
Guo-Zhang Huang ◽  
Ze-Yu Ruan ◽  
Jie-Yu Zheng ◽  
Yan-Cong Chen ◽  
Si-Guo Wu ◽  
...  

<p><a></a>Controlling molecular magnetic anisotropy via structural engineering is delicate and fascinating, especially for single-molecule magnets (SMMs). Herein a family of dysprosium single-ion magnets (SIMs) sitting in pentagonal bipyramid geometry have been synthesized with the variable-size terminal ligands and counter anions, through which the subtle coordination geometry of Dy(III) can be finely tuned based on the size effect. The effective energy barrier (Ueff) successfully increases from 439 K to 632 K and the magnetic hysteresis temperature (under a 200 Oe/s sweep rate) raises from 11 K to 24 K. Based on the crystal-field theory, a semi-quantitative magneto-structural correlation deducing experimentally for the first time is revealed that the Ueff is linearly proportional to the structural-related value S2<sup>0</sup> corresponding to the axial coordination bond lengths and the bond angles. Through the evaluation of the remanent magnetization from hysteresis, quantum tunneling of magnetization (QTM) is found to exhibit negative correlation with the structural-related value S<sub>tun</sub> corresponding to the axial coordination bond angles.<br></p>


1986 ◽  
Vol 49 (18) ◽  
pp. 1129-1131 ◽  
Author(s):  
Saburo Yamamoto ◽  
Toshiki Hijikata

2010 ◽  
Vol 663-665 ◽  
pp. 108-112
Author(s):  
Chao Liang Ding ◽  
Min Teng ◽  
Zhi Guo Zhao ◽  
Liu Zhan Pan

Using the coherence theory of non-stationary fields and the method of Fourier transform, the spectral properties of spatially and spectrally partially coherent Gaussian Schell-model pulsed (GSMP) beams in fused-silica glass medium are studied and analyzed numerically. It is shown that the spectral shift takes place, which depends on the position of the field point, spatial correlation length, temporal coherence length and dispersive property of medium, as GSMP beams propagate in fused-silica glass medium. The on-axis spectrum is blue-shifted, and the relative spectral shift increases with increasing propagation distance, and decreases as the spatial correlation length and temporal coherence length increases, and then approaches an asymptotic value. The dispersive property of medium plays an important role in the spectral properties of spatially and spectrally partially coherent beams.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jungseek Hwang

AbstractElectron–boson spectral density functions (EBSDFs) can be obtained from measured spectra using various spectroscopic techniques, including optical spectroscopy. EBSDFs, known as glue functions, are suggested to have a magnetic origin. Here, we investigated EBSDFs obtained from the measured optical spectra of hole-doped cuprates with wide doping levels, from underdoped to overdoped cuprates. The average frequency of an EBSDF provides the timescale for the spin fluctuations to form Cooper pairs. This timescale is directly associated with retarded interactions between electrons. Using this timescale and Fermi velocity, a reasonable superconducting coherence length, which reflects the size of the Cooper pair, can be extracted. The obtained coherence lengths were consistent with those measured via other experimental techniques. Therefore, the formation of Cooper pairs in cuprates can be explained by spin fluctuations, the timescales of which appear in EBSDFs. Consequently, EBSDFs provide crucial information on the timescale of the microscopic mechanism of Cooper pair formation.


2007 ◽  
Vol 22 (4) ◽  
pp. 245-251 ◽  
Author(s):  
T. Qadri ◽  
P. Bohdanecka ◽  
J. Tunér ◽  
L. Miranda ◽  
M. Altamash ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document