Wakefield contraction and high-quality electron bunch generation in transverse nonuniform plasmas driven by intense laser pulses

Author(s):  
Mingping Liu ◽  
Bowen Yu ◽  
Suhui Deng
Author(s):  
Albert Reitsma ◽  
Dino Jaroszynski

A comparison is made between the interaction of electron bunches and intense laser pulses with plasma. The laser pulse is modelled with photon kinetic theory , i.e. a representation of the electromagnetic field in terms of classical quasi-particles with space and wave number coordinates, which enables a direct comparison with the phase space evolution of the electron bunch. Analytical results are presented of the plasma waves excited by a propagating electron bunch or laser pulse, the motion of electrons or photons in these plasma waves and collective effects, which result from the self-consistent coupling of the particle and plasma wave dynamics.


Author(s):  
Mahsa Mehrangiz

Abstract With persistent progress in ultra-intense laser pulses, Coulomb explosion (CE) of spherical nanoclusters can in principle produce high-quality-quasi-monoenergetic ions. Focusing on using CE framework, in this paper, we have proposed a target scheme to accelerate light/heavy ions’ beam. The scheme relies on encapsulating a hollow Gold nanocluster inside a hollow proton-Carbon (HC) nanosphere. The ability of this suggestion has been simulated by the two-dimensional particle-in-cell code (EPOCH). Simulation results exhibit that a hollow Gold cluster can positively increase the electrons’ extraction. This condition may improve the acceleration of low-divergence H+, C6+, and Au67+ ions. Our simulation shows that at the end of the interaction, for a Gold cluster with an optimal hollow radius of 91.3 nm, the cut-off energy of H+, C6+, and Au67+ are about 54.9 MeV/u, 51.5 MeV/u, and 54.9 MeV/u, respectively. In this case, an increase of about 52% for H+ and 61% for C6+ is obtained, contrast to bare HC hollow nanosphere (i.e., a hollow nanosphere with no cluster), while the relative divergence decreases to 1.38 and 1.86, respectively for H+ and C6+ ions. We have also compared our simulation results with another proposed target structure composed of a void area with an optimum diameter of 70.4 nm between the fully- Gold nanocluster and HC nanosphere. We have exhibited that the results are improved, contrast to bare nanosphere. However, the cut-off energy suppression and angular divergence increase are shown compared with encapsulated hollow Gold nanocluster structure.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elmina Kabouraki ◽  
Vasileia Melissinaki ◽  
Amit Yadav ◽  
Andrius Melninkaitis ◽  
Konstantina Tourlouki ◽  
...  

Abstract Optics manufacturing technology is predicted to play a major role in the future production of integrated photonic circuits. One of the major drawbacks in the realization of photonic circuits is the damage of optical materials by intense laser pulses. Here, we report on the preparation of a series of organic–inorganic hybrid photoresists that exhibit enhanced laser-induced damage threshold. These photoresists showed to be candidates for the fabrication of micro-optical elements (MOEs) using three-dimensional multiphoton lithography. Moreover, they demonstrate pattern ability by nanoimprint lithography, making them suitable for future mass production of MOEs.


2012 ◽  
Vol 137 (4) ◽  
pp. 044112 ◽  
Author(s):  
Mohsen Vafaee ◽  
Firoozeh Sami ◽  
Babak Shokri ◽  
Behnaz Buzari ◽  
Hassan Sabzyan

2012 ◽  
Vol 31 (1) ◽  
pp. 23-28 ◽  
Author(s):  
V.V. Korobkin ◽  
M.Yu. Romanovskiy ◽  
V.A. Trofimov ◽  
O.B. Shiryaev

AbstractA new concept of generating tight bunches of electrons accelerated to high energies is proposed. The electrons are born via ionization of a low-density neutral gas by laser radiation, and the concept is based on the electrons acceleration in traps arising within the pattern of interference of several relativistically intense laser pulses with amplitude fronts tilted relative to their phase fronts. The traps move with the speed of light and (1) collect electrons; (2) compress them to extremely high density in all dimensions, forming electron bunches; and (3) accelerate the resulting bunches to energies of at least several GeV per electron. The simulations of bunch formation employ the Newton equation with the corresponding Lorentz force.


2013 ◽  
Vol 20 (9) ◽  
pp. 093109 ◽  
Author(s):  
L. G. Huang ◽  
M. Bussmann ◽  
T. Kluge ◽  
A. L. Lei ◽  
W. Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document