Prediction method of input parameters impacting of dimensional accuracy of high aspect ratio holes obtained by using EDD

Author(s):  
Magdalena Machno ◽  
Andrzej Matras
2015 ◽  
Vol 830-831 ◽  
pp. 112-115 ◽  
Author(s):  
Anil Kumar Jain ◽  
Kasala Narasaiah ◽  
Shibu Gopinath

In present scenario most of airframe components employ aluminum alloy materials having wall thickness of 1.2 to 3mm. With advancement of manufacturing techniques such as high speed machining, it is possible to machine components with wall/floor thickness up to 0.3 to 0.5 mm with high aspect ratio. The aim of making such parts is to reduce weight of payload. The machining of monolithic structure involves removing of material up to 95% from the raw material. The objective of the study is to achieve maximum material removal rate without compromise on geometry, dimensional accuracy while machining the part. This paper proposes a working methodology for high speed machining which includes efficient process planning, based on static and dynamic analysis. This paper provides insight knowledge of selection of cutting tool, fixture design, clamping method, cutting process parameters; machine tool and computer aided manufacturing (CAM) strategy, optimum stock for minimal bending and distortion. This technology has been demonstrated in hexagonal test specimen of 0.5 mm thin wall and also proven on the indigenous developed global positioning system (GPS) components.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3750
Author(s):  
Pin-Chuan Chen ◽  
Po-Tsang Chen ◽  
Tuan Ngoc Anh Vo

Stereolithographic printing (SL) is widely used to create mini/microfluidic devices; however, the formation of microchannels smaller than 500 μm with good inner surface quality is still challenging due to the printing resolution of current commercial printers and the z-overcure error and scalloping phenomena. In the current study, we used SL printing to create microchannels with the aim of achieving a high degree of dimensional precision and a high-quality microchannel inner surface. Extensive experiments were performed and our results revealed the following: (1) the SL printing of microchannels can be implemented in three steps including channel layer printing, an oxygen inhibition process, and roof layer printing; (2) printing thickness should be reduced to minimize the scalloping phenomenon, which significantly improves dimensional accuracy and the quality of inner microchannel surfaces; (3) the inclusion of an oxygen inhibition step is a critical and efficient approach to suppressing the z-overcure error in order to eliminate the formation of in-channel obstructions; (4) microchannels with an extremely high aspect ratio of 40:1 (4000 μm in height and 100 μm in width) can be successfully manufactured within one hour by following the three-step printing process.


2018 ◽  
Author(s):  
Gen Hayase

By exploiting the dispersibility and rigidity of boehmite nanofibers (BNFs) with a high aspect ratio of 4 nm in diameter and several micrometers in length, multiwall-carbon nanotubes (MWCNTs) were successfully dispersed in aqueous solutions. In these sols, the MWCNTs were dispersed at a ratio of about 5–8% relative to BNFs. Self-standing BNF–nanotube films were also obtained by filtering these dispersions and showing their functionality. These films can be expected to be applied to sensing materials.


Sign in / Sign up

Export Citation Format

Share Document