Doping graphene with carbon-based cage molecules for optoelectronic devices

Author(s):  
Anupama B. Kaul
Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1858 ◽  
Author(s):  
Nguyen ◽  
Nguyen ◽  
Nguyen ◽  
Le ◽  
Vo ◽  
...  

Carbon-based materials are promising candidates as charge transport layers in various optoelectronic devices and have been applied to enhance the performance and stability of such devices. In this paper, we provide an overview of the most contemporary strategies that use carbon-based materials including graphene, graphene oxide, carbon nanotubes, carbon quantum dots, and graphitic carbon nitride as buffer layers in polymer solar cells (PSCs). The crucial parameters that regulate the performance of carbon-based buffer layers are highlighted and discussed in detail. Furthermore, the performances of recently developed carbon-based materials as hole and electron transport layers in PSCs compared with those of commercially available hole/electron transport layers are evaluated. Finally, we elaborate on the remaining challenges and future directions for the development of carbon-based buffer layers to achieve high-efficiency and high-stability PSCs.


2021 ◽  
Author(s):  
Huaizhe Xu ◽  
Qiqi Yan ◽  
Liying Wang ◽  
Sansheng Wang ◽  
Yaping Zhang

Abstract The symmetry of surface states in graphene superlattices (SLs) terminated with a magnetic cap layer has been identified with numerical calculations. It is found that the surface states in pure electric SLs with As ≥ 0 are symmetric about ky = 0 to those with As ≤ 0 . While those in pure magnetic SLs with the same As are symmetric about E = 0. Additionally, the surface states in SLs of general complex electric/magnetic basis show no symmetry. The symmetry of surface states in terminated SLs is mainly determined by the nature of the basis and its configuration. These interesting results provide a useful guideline to the experimental exploration of carbon-based quantum electronic and optoelectronic devices.


Author(s):  
B. K. Kirchoff ◽  
L.F. Allard ◽  
W.C. Bigelow

In attempting to use the SEM to investigate the transition from the vegetative to the floral state in oat (Avena sativa L.) it was discovered that the procedures of fixation and critical point drying (CPD), and fresh tissue examination of the specimens gave unsatisfactory results. In most cases, by using these techniques, cells of the tissue were collapsed or otherwise visibly distorted. Figure 1 shows the results of fixation with 4.5% formaldehyde-gluteraldehyde followed by CPD. Almost all cellular detail has been obscured by the resulting shrinkage distortions. The larger cracks seen on the left of the picture may be due to dissection damage, rather than CPD. The results of observation of fresh tissue are seen in Fig. 2. Although there is a substantial improvement over CPD, some cell collapse still occurs.Due to these difficulties, it was decided to experiment with cold stage techniques. The specimens to be observed were dissected out and attached to the sample stub using a carbon based conductive paint in acetone.


2020 ◽  
Author(s):  
Idoia Hita ◽  
Tomas Cordero-Lanzac ◽  
Francisco J. Garcia-Mateos ◽  
Jose Rodriguez-Mirasol ◽  
Tomas Cordero ◽  
...  

2020 ◽  
Author(s):  
Idoia Hita ◽  
Tomas Cordero-Lanzac ◽  
Francisco J. Garcia-Mateos ◽  
Jose Rodriguez-Mirasol ◽  
Tomas Cordero ◽  
...  

2019 ◽  
Author(s):  
Benjamin Egleston ◽  
Konstantin V. Luzyanin ◽  
Michael C. Brand ◽  
Rob Clowes ◽  
Michael E. Briggs ◽  
...  

Control of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe-selective to CH<sub>4</sub>-selective, which is understood using <sup>129</sup>Xe, <sup>1</sup>H, and pulsed-field gradient NMR spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document