Iterative reconstruction anti-correlated ROF model for noise reduction in dual-energy CBCT imaging

Author(s):  
Luis Albert Zavala-Mondragon ◽  
Klaus Juergen Engel ◽  
Bernd Menser ◽  
Danny Ruijters ◽  
Peter H.N. de With ◽  
...  
2015 ◽  
Author(s):  
Fengdan Wang ◽  
Yan Zhang ◽  
Zhengyu Jin ◽  
Richard Zwar

Objective. To explore whether the image noises and the metal artifacts could be further managed by the combined use of two technologies, the adaptive statistical iterative reconstruction (ASIR) and the monochromatic imaging generated by gemstone spectral imaging (GSI) dual-energy CT. Materials and Methods. Fifty-one patients with 318 spinal pedicle screws were prospectively scanned with dual energy CT by using fast kV-switching GSI between 80 and 140 kVp. The monochromatic GSI images at 110 keV were reconstructed either without ASIR or with ASIR of various levels (30%, 50%, 70% and 100%). For these five sets of images, both objective and subjective image quality assessments were performed to evaluate the image quality. Results. With objective image quality assessment, the metal artifacts (measured by an artifacts index) significantly decreased when increasing levels of ASIR was utilized (p < 0.001). Moreover, adding ASIR to GSI also decreased the image noise (p < 0.001) and improved the signal-to-noise ratio (SNR, p < 0.001). With subjective image quality analysis, the inter-reader agreements were good, with intra-class correlation coefficients (ICC) of 0.89 to 0.99. Meanwhile, the visualization of the peri-implant soft tissue was improved at higher ASIR levels (p < 0.001). Conclusion. Combined use of ASIR and GSI is shown to decrease the image noise and improve the image quality in post-spinal fusion CT scans. Optimal results were achieved with ASIR levels of over 70%.


Author(s):  
Qiao Zhang ◽  
Jinhua Sheng ◽  
Bin Chen

Background: X-ray computed tomography is the first imaging technology that supports accurate nondestructive interior image reconstruction of an object from sufficient projection data. Low-dose computed tomography (LDCT) has been considered to relieve the harm to patients caused by X-ray radiation. However, LDCT images can be degraded by quantum noise and streak artifacts. Methods: The objective of the authors’ study is to evaluate the optimal level of the hybrid iterative reconstruction (HIR) that generates images with the best diagnostic quality on different dose and noise levels. HIR with optimizations is proposed to reduce image noise and provide better performance at a low dose. The Catphan R 504 phantom is employed to assess various image qualities (IQ). Results: For any given scanning protocols, there is linear noise reduction and linear increase of contrast-to- noise ratio (CNR) using optimal HIR. The evidence from various module tests demonstrates that the shape of the noise power spectrum is continuously shifted to low frequency with increasing HIR levels compared with that of filtered-back-projection (FBP). This may describe the difference between the human observer performance and features of the ideal low-contrast objects. Conclusion: Optimal HIR is clearly demonstrated to be a superior method for reducing image noise and improving CNR compared to FBP. Optimal HIR also inhibits texture change or spectrum shift compared with the pure IR method. Even though there are continuous noise reduction and CNR increase with HIR at increasing levels, the human observer performance does not seem to improve simultaneously due to coarser noise (low-frequency noise). HIR level 3 to 5 is optimal for their study. It is possible for the optimal HIR to offer equivalent diagnostic IQ at a lower dose compared with FBP at a routine dose.


2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohan Li ◽  
Zhe Wang ◽  
Qiong Xu ◽  
Zhidu Zhang ◽  
Zhiwei Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document