scholarly journals Are fiducial registration error and target registration error correlated? SciKit-SurgeryFRED for teaching and research

Author(s):  
Stephen A. Thompson ◽  
Thomas Dowrick ◽  
Mian Ahmad ◽  
Jeremy Opie ◽  
Matthew J. Clarkson
2015 ◽  
Vol 11 (3) ◽  
pp. 376-381 ◽  
Author(s):  
Ian J Gerard ◽  
Jeffery A Hall ◽  
Kelvin Mok ◽  
D Louis Collins

Abstract BACKGROUND Newer versions of the commercial Medtronic StealthStation allow the use of only 8 landmark pairs for patient-to-image registration as opposed to 9 landmarks in older systems. The choice of which landmark pair to drop in these newer systems can have an effect on the quality of the patient-to-image registration. OBJECTIVE To investigate 4 landmark registration protocols based on 8 landmark pairs and compare the resulting registration accuracy with a 9-landmark protocol. METHODS Four different protocols were tested on both phantoms and patients. Two of the protocols involved using 4 ear landmarks and 4 facial landmarks and the other 2 involved using 3 ear landmarks and 5 facial landmarks. Both the fiducial registration error and target registration error were evaluated for each of the different protocols to determine any difference between them and the 9-landmark protocol. RESULTS No difference in fiducial registration error was found between any of the 8-landmark protocols and the 9-landmark protocol. A significant decrease (P < .05) in target registration error was found when using a protocol based on 4 ear landmarks and 4 facial landmarks compared with the other protocols based on 3 ear landmarks. CONCLUSION When using 8 landmarks to perform the patient-to-image registration, the protocol using 4 ear landmarks and 4 facial landmarks greatly outperformed the other 8-landmark protocols and 9-landmark protocol, resulting in the lowest target registration error.


2019 ◽  
Vol 128 (10) ◽  
pp. 894-902 ◽  
Author(s):  
Julia Kristin ◽  
Manuel Burggraf ◽  
Dirk Mucha ◽  
Christoph Malolepszy ◽  
Silvan Anderssohn ◽  
...  

Objective: Navigation systems create a connection between imaging data and intraoperative situs, allowing the surgeon to consistently determine the location of instruments and patient anatomy during the surgical procedure. The best results regarding the target registration error (measurement uncertainty) are normally demonstrated using fiducials. This study aimed at investigating a new registration strategy for an electromagnetic navigation device. Methods: For evaluation of an electromagnetic navigation system and comparison of registration with screw markers and automatic registration, we are calculating the target registration error in the region of the paranasal sinuses/anterior and lateral skull base with the use of an electromagnetic navigation system and intraoperative digital volume tomography (cone-beam computed tomography). We carried out 10 registrations on a head model (total n = 150 measurements) and 10 registrations on 4 temporal bone specimens (total n = 160 measurements). Results: All in all, the automatic registration was easy to perform. For the models that were used, a significant difference between an automatic registration and the registration on fiducials was evident for just a limited number of screws. Furthermore, the observed differences varied in terms of the preferential registration procedure. Conclusion: The automatic registration strategy seems to be an alternative to the established methods in artificial and cadaver models of intraoperative scenarios. Using intraoperative imaging, there is an option to resort to this kind of registration as needed.


2017 ◽  
Vol 4 (5) ◽  
pp. 157-162 ◽  
Author(s):  
Elvis C.S. Chen ◽  
Isabella Morgan ◽  
Uditha Jayarathne ◽  
Burton Ma ◽  
Terry M. Peters

Author(s):  
Bardia Konh ◽  
Tarun K. Podder

Shape memory alloy (SMA) based active needles [1] have shown the potential to introduce remarkable improvements to many percutaneous needle-based procedures such as thermal ablation, brachytherapy and breast biopsy. Brachytherapy for instance is a common procedure to treat early stage prostate cancer because its superior clinical outcome. Prostate cancer is sex specific and only affects males; it is more prevalent in elderly males, ages 65–74 years old [2]. There is projected to be a 24% increase in cancer cases for men by 2020, this would mean approximately 1 million new cases each year [3]. There was a study in 2015 [4] that examined the needle placement accuracy for brachytherapy procedure while implementing the use of a 3D navigation system, Surgical Planning and Orientation Computer System. The study examined the Target Registration Error (TRE) for single and multiple needle placements. Analysis of the 250 different targets showed a mean Target Registration Error for single needle applications of (1.1 ± 0.4 mm), (0.9 ± 0.3 mm), and (0.7 ± 0.3 mm) in the x, y, and z directions, respectively. The maximum deviation was found 2.3 mm. In another study by Podder et al. [5], the effects of dose distribution has been discussed which has a high influence on the clinical outcome. The study shows that the curvilinear approach by the active needle would introduce the potential for improving dose distribution, reducing number of needles and resulting is better clinical outcome. Actuating the surgical needles for higher accuracy, SMAs are considered as suitable actuators [6] because of their lightweight, high force and energy density. However, SMA actuated needle will be more complex and may incur additional inaccuracy; thereby after development of a robust active needle, control studies sound very necessary. The focus of this work is to introduce an innovative design of an active needle, and to fabricate the device to demonstrate its capability of creating a high maneuverability at the needle tip. This design of the active needle privileges from actuation of a comparatively long SMA wire to create a considerable amount of deflection, while minimizing the tissue rupture. Most of the needles today are made of stainless steel, titanium or Nitinol; they are ensured to be sturdy enough to puncture the tissue and overcome its resistance during insertion. This would limit the flexibility of the needles. In our previous designs [7,8], a joint element was included in design to provide more dexterity to the needle’s structure. Despite of the fact that this soft element increased the needle’s flexibility; the design introduced a high tissue rupture during actuation because of the gap between the body of the needle and the SMA actuator. The amount of rupture was increasing with larger deflection of the needle. This work decreases the rupture to a reasonable amount while even a higher deflection compared to our previous design is achieved. Table 1 lists general specifications and approximations of dimensions and requirements that have been tried to be addressed in the current design as much as possible. There will be still future work to meet some other factors discussed at the end of this study.


2020 ◽  
Vol 10 (6) ◽  
pp. 1466-1472
Author(s):  
Hakje Yoo ◽  
Ahnryul Choi ◽  
Hyunggun Kim ◽  
Joung Hwan Mun

Surface registration is an important factor in surgical navigation in determining the success rate and stability of surgery by providing the operator with the exact location of a lesion. The problem of surface registration is that point cloud in the patient space is acquired at irregular intervals due to the operator’s tracking speed and method. The purpose of this study is to analyze the effect of irregular intervals of point cloud caused by tracking speed and method on the registration accuracy. For this study, we created the head phantom to obtain a point cloud in the patient space with a similar object to that of a patient and acquired a point cloud in a total of ten times. In order to analyze the accuracy of registration according to the interval, cubic spline interpolation was applied to the existing point cloud. Additionally, irregular intervals of the point cloud were regenerated into regular intervals. As a result of applying the regenerated point cloud to the surface registration, the surface registration error was not statistically different from the existing point cloud. However, the target registration error significantly lower (p < 0.01). These results indicate that the intervals of point cloud affect the accuracy of registration, and that point cloud with regular intervals can improve the surface registration accuracy.


Sign in / Sign up

Export Citation Format

Share Document