EUV defect reduction activities using coater/developer and etching technique

Author(s):  
Takahiro Shiozawa ◽  
Keisuke Yoshida ◽  
Noriaki Nagamine ◽  
Arnaud Dauendorffer ◽  
Satoru Shimura ◽  
...  
Author(s):  
G. G. Maul

The chromatin of eukaryotic cells is separated from the cytoplasm by a double membrane. One obvious structural specialization of the nuclear membrane is the presence of pores which have been implicated to facilitate the selective nucleocytoplasmic exchange of a variety of large molecules. Thus, the function of nuclear pores has mainly been regarded to be a passive one. Non-membranous diaphragms, radiating fibers, central rings, and other pore-associated structures were thought to play a role in the selective filter function of the nuclear pore complex. Evidence will be presented that suggests that the nuclear pore is a dynamic structure which is non-randomly distributed and can be formed during interphase, and that a close relationship exists between chromatin and the membranous part of the nuclear pore complex.Octagonality of the nuclear pore complex has been confirmed by a variety of techniques. Using the freeze-etching technique, it was possible to show that the membranous part of the pore complex has an eight-sided outline in human melanoma cells in vitro. Fibers which traverse the pore proper at its corners are continuous and indistinguishable from chromatin at the nucleoplasmic side, as seen in conventionally fixed and sectioned material. Chromatin can be seen in octagonal outline if serial sections are analyzed which are parallel but do not include nuclear membranes (Fig. 1). It is concluded that the shape of the pore rim is due to fibrous material traversing the pore, and may not have any functional significance. In many pores one can recognize a central ring with eight fibers radiating to the corners of the pore rim. Such a structural arrangement is also found to connect eight ribosomes at the nuclear membrane.


Author(s):  
G. G. Cocks ◽  
C. E. Cluthe

The freeze etching technique is potentially useful for examining dilute solutions or suspensions of macromolecular materials. Quick freezing of aqueous solutions in Freon or propane at or near liquid nitrogen temperature produces relatively large ice crystals and these crystals may damage the structures to be examined. Cryoprotective agents may reduce damage to the specimem, hut their use often results in the formation of a different set of specimem artifacts.In a study of the structure of polyethylene oxide gels glycerol and sucrose were used as cryoprotective agents. The experiments reported here show some of the structures which can appear when these cryoprotective agents are used.Figure 1 shows a fractured surface of a frozen 25% aqueous solution of sucrose. The branches of dendritic ice crystals surrounded hy ice-sucrose eutectic can be seen. When this fractured surface is etched the ice in the dendrites sublimes giving the type of structure shown in Figure 2. The ice-sucrose eutectic etches much more slowly. It is the smooth continuous structural constituent surrounding the branches of the dendrites.


Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


2015 ◽  
Vol 9 (6) ◽  
pp. 536 ◽  
Author(s):  
P. Kannan ◽  
K. Balasubramanian ◽  
R. Vinayagamoorthy

2020 ◽  
Vol 74 (4) ◽  
pp. 309-315
Author(s):  
Hiroyuki Oishi ◽  
Koichi Tadaki ◽  
Kazutaka Kasuga

Author(s):  
Mike Santana ◽  
Alfredo V. Herrera

Abstract This paper describes a methodology for correlating physical defect inspection/navigation systems with electrical bitmap data through the fabrication of artificial defects via reticle alterations or circuit modifications using an inline FIB. The methodology chosen consisted of altering decommissioned reticles to create defects resulting in both open and shorted circuits within areas of an AMD microprocessor cache. The reticles were subsequently scanned using a KLA SL300HR StarLight inspection system to confirm their location, while wafers processed on these reticles were scanned at several layers using standard inline metrology. Finally, the wafers were electrically tested, bitmapped, and physically deprocessed. All defect data was then analyzed and cross-correlated between each system, uncovering some important system deficiencies and learning opportunities. Data and images are included to support the significance and effectiveness of such a methodology.


Author(s):  
Julie S. Doll

Abstract To enable efficient, accurate debug of Intel architecture components to take place within contract manufacturing sites, and to provide alternatives for the removal of Intel components from, Intel is deploying a diagnostic capability and attendant educational collateral known as to achieve these objectives Intel® Component Diagnostic Technology. This paper will describe details of Intel® Component Diagnostic Technology, including the diagnostic fixture and user interface, diagnostic scripts and analytical coverage, data management and reporting, and on-site and Web-based educational offerings.


2008 ◽  
Author(s):  
Garrett Standley ◽  
John Kasson ◽  
Brian Kidd
Keyword(s):  

2015 ◽  
Vol 48 (36) ◽  
pp. 365303 ◽  
Author(s):  
Jingchang Sun ◽  
Ting Zhao ◽  
Zhangwei Ma ◽  
Ming Li ◽  
Cheng Chang ◽  
...  

Author(s):  
Chuang Li ◽  
Xia Hao ◽  
Jingquan Zhang ◽  
Lili Wu ◽  
Wei Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document