Moving target S-Band radar data for Doppler and micro-Doppler analysis using a scale-model helicopter measured in a 100GHz compact radar range

Author(s):  
Thomas M. Goyette ◽  
Jason Dickinson ◽  
Guy DeMartinis ◽  
Andrew Gatesman ◽  
Charles Molhoek
2012 ◽  
Vol 27 (4) ◽  
pp. 832-855 ◽  
Author(s):  
Juanzhen Sun ◽  
Stanley B. Trier ◽  
Qingnong Xiao ◽  
Morris L. Weisman ◽  
Hongli Wang ◽  
...  

Abstract Sensitivity of 0–12-h warm-season precipitation forecasts to atmospheric initial conditions, including those from different large-scale model analyses and from rapid cycled (RC) three-dimensional variational data assimilations (3DVAR) with and without radar data, is investigated for a 6-day period during the International H2O Project. Neighborhood-based precipitation verification is used to compare forecasts made with the Advanced Research core of the Weather Research and Forecasting Model (ARW-WRF). Three significant convective episodes are examined by comparing the precipitation patterns and locations from different forecast experiments. From two of these three case studies, causes for the success and failure of the RC data assimilation in improving forecast skill are shown. Results indicate that the use of higher-resolution analysis in the initialization, rapid update cycling via WRF 3DVAR data assimilation, and the additional assimilation of radar observations each play a role in shortening the period of the initial precipitation spinup as well as in placing storms closer to observations, thus improving precipitation forecast skill by up to 8–9 h. Impacts of data assimilation differ for forecasts initialized at 0000 and 1200 UTC. The case studies show that the pattern and location of the forecasted precipitation were noticeably improved with radar data assimilation for the two late afternoon cases that featured lines of convection driven by surface-based cold pools. In contrast, the RC 3DVAR, both with and without radar data, had negative impacts on convective forecasts for a case of morning elevated convection associated with a midlatitude short-wave trough.


2021 ◽  
Vol 21 (1) ◽  
pp. 463-480
Author(s):  
Nadia Fourrié ◽  
Mathieu Nuret ◽  
Pierre Brousseau ◽  
Olivier Caumont

Abstract. This study was performed in the framework of HyMeX (Hydrological cycle in the Mediterranean Experiment), which aimed to study the heavy precipitation that regularly affects the Mediterranean area. A reanalysis with a convective-scale model AROME-WMED (Application of Research to Operations at MEsoscale western Mediterranean) was performed, which assimilated most of the available data for a 2-month period corresponding to the first special observation period of the field campaign (Fourrié et al., 2019). Among them, observations related to the low-level humidity flow were assimilated. Such observations are important for the description of the feeding of the convective mesoscale systems with humidity (Duffourg and Ducrocq, 2011; Bresson et al., 2012; Ricard et al., 2012). Among them there were a dense reprocessed network of high-quality Global Navigation Satellite System (GNSS) zenithal total delay (ZTD) observations, reprocessed data from wind profilers, lidar-derived vertical profiles of humidity (ground and airborne) and Spanish radar data. The aim of the paper is to assess the impact of the assimilation of these four observation types on the analyses and the forecasts from the 3 h forecast range (first guess) up to the 48 h forecast range. In order to assess this impact, several observing system experiments (OSEs) or so-called denial experiments, were carried out by removing one single data set from the observation data set assimilated in the reanalysis. Among the evaluated observations, it is found that the ground-based GNSS ZTD data set provides the largest impact on the analyses and the forecasts, as it represents an evenly spread and frequent data set providing information at each analysis time over the AROME-WMED domain. The impact of the reprocessing of GNSS ZTD data also improves the forecast quality, but this impact is not statistically significant. The assimilation of the Spanish radar data improves the 3 h precipitation forecast quality as well as the short-term (30 h) precipitation forecasts, but this impact remains located over Spain. Moreover, marginal impact from wind profilers was observed on wind background quality. No impacts have been found regarding lidar data, as they represent a very small data set, mainly located over the sea.


2007 ◽  
Author(s):  
Matthew Ferrara ◽  
Gregory Arnold ◽  
Margaret Cheney

2020 ◽  
Author(s):  
Nadia Fourrié ◽  
Mathieu Nuret ◽  
Pierre Brousseau ◽  
Olivier Caumont

Abstract. This paper presents the results of several observing system experiments (OSEs) performed with AROME-WMED. This model is the HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated version (Fourrié et al., 2019) of the French operational meso-scale model AROME. The second and final reanalyses assimilated most of all available data for a 2 month period corresponding to the first Special Observation Period of HyMeX. In order to assess the impact of various observation data set assimilation on the forecasts, several OSEs or also-called denial experiments, were carried out. In this study, impact of a dense reprocessed network of high quality Global Navigation Satellite System (GNSS) Zenithal Total Delay (ZTD) observations, reprocessed wind-Profilers, lidar-derived vertical profiles of humidity (ground and airborne) and Spanish radar data, is thus discussed. Among the evaluated observations, it is found that the ground-based GNSS ZTD data set provides the largest impact on the analyses and the forecasts as it represents an evenly spread and frequent data set providing information at each analysis time over the AROME-WMED domain. The impact of the reprocessing of GNSS ZTD data also improves the forecast quality but this impact is not statistically significant. The assimilation of the Spanish radar data improves the very short term forecast quality as well as the short term forecasts but this impact remains located over Spain. Marginal impact from wind profilers was observed on wind background quality. No impacts have been found regarding lidar data as they represent a very small data set.


2018 ◽  
Vol 18 (10) ◽  
pp. 4167-4175 ◽  
Author(s):  
Matthew Ash ◽  
Matthew Ritchie ◽  
Kevin Chetty

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Paulo Marques

This paper presents and evaluates a novel SAR ambiguity function for traffic monitoring. The novelty consists in introducing the capability to discriminate targets moving in a predefined direction of interest, reducing the contribution of traffic moving in undesired directions. Experimental results show that the modified SAR ambiguity function provides better results than the traditional methodology and may, therefore, be useful for civil traffic monitoring using single-channel synthetic aperture radar data.


Author(s):  
Qianzhao Lei ◽  
Zhensen Wu ◽  
Lixin Guo ◽  
Junmei Fan ◽  
Senlin Geng

A high-frequency (HF) sky-wave radar always monitoring large area of sea surface, for detecting sea surface moving objects, there must be big data waiting to be processed. A set of data processing methods were proposed, the successful implementation of HF sky-wave radar on the sea moving target detection. By setting the HF sky-wave radar parameters, after the initial data processing, the gotten HF sky-wave radar data were saved. Then a new HF sky-wave radar data processing method was provided, this method was the so-called three-step detection method (TSTM) which based on the constant false alarm rate (CFAR) technique. By using TSTM, setting the decision threshold G, with false alarms being ruled out, a moving target was detected out at last, its speed was calculated. The results also proved that TSTM could effectively reduce the sea clutter, and greatly lessen the echo-broadening and double-image caused by ionosphere contamination.


Sign in / Sign up

Export Citation Format

Share Document