In-situ bio-compatible iron-based nanoparticle fabrication with ultra-short laser pulses

Author(s):  
Aurelian Marcu ◽  
Razvan Ungureanu ◽  
Bogdan Calin ◽  
Raluca Ianchis ◽  
Sevinci Pop ◽  
...  
2013 ◽  
Vol 103 (5) ◽  
pp. 054107 ◽  
Author(s):  
U. Chakravarty ◽  
B. S. Rao ◽  
V. Arora ◽  
A. Upadhyay ◽  
H. Singhal ◽  
...  

2004 ◽  
Vol 22 (1) ◽  
pp. 19-24 ◽  
Author(s):  
F. PEGORARO ◽  
S. ATZENI ◽  
M. BORGHESI ◽  
S. BULANOV ◽  
T. ESIRKEPOV ◽  
...  

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Ding ◽  
Marc Rebholz ◽  
Lennart Aufleger ◽  
Maximilian Hartmann ◽  
Veit Stooß ◽  
...  

AbstractHigh-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.


2007 ◽  
Author(s):  
Tatiana E. Itina ◽  
Mikhail E. Povarnitsyn ◽  
Karine Gouriet ◽  
Sylvie Noël ◽  
Jörg Hermann

2000 ◽  
Vol 61 (3) ◽  
Author(s):  
H. C. Day ◽  
Bernard Piraux ◽  
R. M. Potvliege

2000 ◽  
Vol 7 (5) ◽  
pp. 2232-2240 ◽  
Author(s):  
V. M. Malkin ◽  
G. Shvets ◽  
N. J. Fisch

Sign in / Sign up

Export Citation Format

Share Document