Rapid metrology of precision-machined parts via robotic automation

Author(s):  
Kramer Lindell
Alloy Digest ◽  
2002 ◽  
Vol 51 (5) ◽  

Abstract NIROSTA 4305 is an austenitic alloy with a high sulfur content. The alloy is typically used for machined parts. As with other austenitic steels, it is necessary to machine with good-quality high-speed steel or tungsten carbide tools. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-854. Producer or source: ThyssenKrupp Nirosta GmbH.


1983 ◽  
Vol 105 (3) ◽  
pp. 133-136 ◽  
Author(s):  
A. Israeli ◽  
J. Benedek

The production of precision parts requires manufacturing processes which produce low residual stresses. This study was designed to investigate the parametric relationship between machining processes and residual stress distribution. Sets of steel specimens were single point turned at different feeds. The residual stress profiles of these specimens were monitored, using a continuous etching technique. A “Specific Instability Potential” parameter, derived from the strain energy of the residual stresses, was found to relate directly to the machining parameters. It is suggested that the Specific Instability Potential can be used as a parameter for specifying processing operations.


2014 ◽  
Vol 989-994 ◽  
pp. 3331-3334
Author(s):  
Tao Zhang ◽  
Guo He Li ◽  
L. Han

High speed milling is a newly developed advanced manufacturing technology. Surface integrity is an important object of machined parts. Surface roughness is mostly used to evaluate to the surface integrity. A theoretical surface roughness model for high face milling was established. The influence of cutting parameters on the surface roughness is analyzed. The surface roughness decreases when the cutter radius increases, total number of tooth and rotation angular speed, while it increases with the feeding velocity. The high speed face milling can get a smooth surface and it can replace the grinding with higher efficiency.


Author(s):  
Nicholas J. Yannoulakis ◽  
Sanjay B. Joshi ◽  
Richard A. Wysk

Abstract The increasing application of CAE has lead to the evolution of Concurrent Engineering — a philosophy that prescribes simultaneous consideration of the life-cycle design issues of a product. The Concurrent Engineering (CE) systems that have been developed so far have relied on knowledge bases and qualitative evaluations of a part’s manufacturability for feedback to the design engineer. This paper describes a method for developing quantitative indicators of manufacturability. Feature-based design and estimation of machining parameters are used for ascertaining a part’s manufacturing requirements. These requirements are then combined into indices which lead the designer to features that must be redesigned for improved manufacturability. This method is illustrated on a system for rotational machined parts: the Manufacturability Evaluation and Improvement System (MEIS).


Author(s):  
Haichao Wang ◽  
Jie Zhang ◽  
Xiaolong Zhang ◽  
Changwei Ren ◽  
Xiaoxi Wang ◽  
...  

Feature recognition is an important technology of computer-aided design/computer-aided engineering/computer-aided process planning/computer-aided manufacturing integration in cast-then-machined part manufacturing. Graph-based approach is one of the most popular feature recognition methods; however, it cannot still solve concave-convex mixed interacting feature recognition problem, which is a common problem in feature recognition of cast-then-machined parts. In this study, an oriented feature extraction and recognition approach is proposed for concave-convex mixed interacting features. The method first extracts predefined features directionally according to the rules generated from attributed adjacency graphs–based feature library and peels off them from part model layer by layer. Sub-features in an interacting feature are associated via hints and organized as a feature tree. The time cost is reduced to less than [Formula: see text] by eliminating subgraph isomorphism and matching operations. Oriented feature extraction and recognition approach recognizes non-freeform-surface features directionally regardless of the part structure. Hence, its application scope can be extended to multiple kinds of non-freeform-surface parts by customizing. Based on our findings, implementations on prismatic, plate, fork, axlebox, linkage, and cast-then-machined parts prove that the proposed approach is applicable on non-freeform-surface parts and effectively recognize concave-convex mixed interacting feature in various mechanical parts.


Sign in / Sign up

Export Citation Format

Share Document