scholarly journals The Gamow Explorer: a Gamma-Ray Burst Observatory to study the high redshift universe and enable multi-messenger astrophysics

Author(s):  
Nicholas E. White ◽  
Franz E. Bauer ◽  
Wayne Baumgartner ◽  
Marshall W. Bautz ◽  
Edo Berger ◽  
...  
2020 ◽  
Vol 498 (4) ◽  
pp. 5041-5047
Author(s):  
Nicole M Lloyd-Ronning ◽  
Jarrett L Johnson ◽  
Aycin Aykutalp

ABSTRACT Gamma-ray burst (GRB) data suggest that the jets from GRBs in the high redshift universe are more narrowly collimated than those at lower redshifts. This implies that we detect relatively fewer long GRB progenitor systems (i.e. massive stars) at high redshifts, because a greater fraction of GRBs have their jets pointed away from us. As a result, estimates of the star formation rate (SFR; from the GRB rate) at high redshifts may be diminished if this effect is not taken into account. In this paper, we estimate the SFR using the observed GRB rate, accounting for an evolving jet opening angle. We find that the SFR in the early universe (z > 3) can be up to an order of magnitude higher than the canonical estimates, depending on the severity of beaming angle evolution and the fraction of stars that make long GRBs. Additionally, we find an excess in the SFR at low redshifts, although this lessens when accounting for evolution of the beaming angle. Finally, under the assumption that GRBs do, in fact, trace canonical forms of the cosmic SFR, we constrain the resulting fraction of stars that must produce GRBs, again accounting for jet beaming-angle evolution. We find this assumption suggests a high fraction of stars in the early universe producing GRBs – a result that may, in fact, support our initial assertion that GRBs do not trace canonical estimates of the SFR.


Author(s):  
N. R. Tanvir ◽  
E. Le Floc’h ◽  
L. Christensen ◽  
J. Caruana ◽  
R. Salvaterra ◽  
...  

AbstractAt peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $z\gtrsim 6$ z ≳ 6 ; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.


2000 ◽  
Vol 536 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Donald Q. Lamb ◽  
Daniel E. Reichart

2005 ◽  
Vol 633 (1) ◽  
pp. 29-40 ◽  
Author(s):  
C. J. Conselice ◽  
P. M. Vreeswijk ◽  
A. S. Fruchter ◽  
A. Levan ◽  
C. Kouveliotou ◽  
...  

2006 ◽  
Vol 642 (2) ◽  
pp. L99-L102 ◽  
Author(s):  
P. R. Woźniak ◽  
W. T. Vestrand ◽  
J. A. Wren ◽  
R. R. White ◽  
S. M. Evans ◽  
...  

2012 ◽  
Vol 746 (2) ◽  
pp. 170 ◽  
Author(s):  
A. N. Morgan ◽  
James Long ◽  
Joseph W. Richards ◽  
Tamara Broderick ◽  
Nathaniel R. Butler ◽  
...  

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Orlando Luongo ◽  
Marco Muccino

Gamma-ray bursts are the most powerful explosions in the universe and are mainly placed at very large redshifts, up to z≃9. In this short review, we first discuss gamma-ray burst classification and morphological properties. We then report the likely relations between gamma-ray bursts and other astronomical objects, such as black holes, supernovae, neutron stars, etc., discussing in detail gamma-ray burst progenitors. We classify long and short gamma-ray bursts, working out their timescales, and introduce the standard fireball model. Afterwards, we focus on direct applications of gamma-ray bursts to cosmology and underline under which conditions such sources would act as perfect standard candles if correlations between photometric and spectroscopic properties were not jeopardized by the circularity problem. In this respect, we underline how the shortage of low-z gamma-ray bursts prevents anchor gamma-ray bursts with primary distance indicators. Moreover, we analyze in detail the most adopted gamma-ray burst correlations, highlighting their main differences. We therefore show calibration techniques, comparing such treatments with non-calibration scenarios. For completeness, we discuss the physical properties of the correlation scatters and systematics occurring during experimental computations. Finally, we develop the most recent statistical methods, star formation rate, and high-redshift gamma-ray burst excess and show the most recent constraints obtained from experimental analyses.


2019 ◽  
Vol 623 ◽  
pp. A43 ◽  
Author(s):  
J. Bolmer ◽  
C. Ledoux ◽  
P. Wiseman ◽  
A. De Cia ◽  
J. Selsing ◽  
...  

Context. Damped Lyman-α (DLA) absorption-line systems at the redshifts of gamma-ray burst (GRB) afterglows offer a unique way to probe the physical conditions within star-forming galaxies in the early Universe. Aims. Here we built up a large sample of 22 GRBs at redshifts z > 2 observed with VLT/X-shooter in order to determine the abundances of hydrogen, metals, dust, and molecular species. This allows us to study the metallicity and dust depletion effects in the neutral interstellar medium at high redshift and to answer the question of whether (and why) there might be a lack of H2 in GRB-DLAs. Methods. We developed new methods based on the Bayesian inference package, PyMC, to FIT absorption lines and measure the column densities of different metal species as well as atomic and molecular hydrogen. The derived relative abundances are used to FIT dust depletion sequences and determine the dust-to-metals ratio and the host-galaxy intrinsic visual extinction. Additionally, we searched for the absorption signatures of vibrationally-excited H2 and carbon monoxide. Results. We find that there is no lack of H2-bearing GRB-DLAs. We detect absorption lines from molecular hydrogen in 6 out of 22 GRB afterglow spectra, with molecular fractions ranging between f ≃ 5 × 10−5 and f ≃ 0.04, and claim tentative detections in three additional cases. For the remainder of the sample, we measure, depending on S/N, spectral coverage and instrumental resolution, more or less stringent upper limits. The GRB-DLAs in our sample have on average low metallicities, [X/H]¯ ≈ −1.3, comparable to the population of extremely-strong QSO-DLAs (log N(H I) > 21.5). Furthermore, H2-bearing GRB-DLAs are found to be associated with significant dust extinction, AV > 0.1 mag, and dust-to-metals ratios DTM > 0.4, confirming the importance of dust grains for the production of molecules. All these systems exhibit neutral hydrogen column densities log N(H I) > 21.7. The overall fraction of H2 detections in GRB-DLAs is ≥ 27% (41% including tentative detections), which is three to four times larger than in the general QSO-DLA population. For 2 < z < 4, and considering column densities log N(H I) > 21.7, the H2 detection fraction is 60–80% in GRB-DLAs and in extremely strong QSO-DLAs. This is likely due to the fact that both GRB- and QSO-DLAs with high neutral hydrogen column densities are probed by sight-lines with small impact parameters, indicating that the absorbing gas is associated with the inner regions of the absorbing galaxy, where the gas pressure is higher and the conversion of H I to H2 takes place. In the case of GRB hosts, this diffuse molecular gas is located at distances ≳ 500 pc from the GRB and hence is unrelated to the star-forming region where the event occurred.


Sign in / Sign up

Export Citation Format

Share Document