Focusing of scattering light based on wavefront feedback shaping technology

2021 ◽  
Author(s):  
Bote Qi ◽  
Lihua Shen ◽  
Rui-pin Chen
Keyword(s):  
2018 ◽  
Vol 176 ◽  
pp. 01019 ◽  
Author(s):  
Sachiyo Sugimoto ◽  
Ippei Asahi ◽  
Tatuso Shiina

When change of hydrogen(H2) gas concentration in a certain point is measured, non-contact measurement technology with high temporal and spatial resolution is necessary. In this study, H2 concentration in the small area of <1cm2 under the gas flow was measured by using a Raman lidar. Raman scattering light at the measurement point of 750mm ahead was detected by the Raman lidar. As a result, it was proved that the H2 concentration of more than 100ppm could be successfully measured.


1980 ◽  
Vol 102 (2) ◽  
pp. 174-182 ◽  
Author(s):  
R. E. Falco

The measurement of coherent motions in turbulent and unsteady flows is discussed. A technique which discriminates these motions based upon the patterns they create by scattering light from a fog of tiny oil drops is described. It is shown that hot-wire anemometry can be used in this oil fog so that hot-wire data can be conditionally sampled to the visual patterns, giving directly interpretable measures of the importance of the selected features. The three-dimensionality of the coherent motions can also be directly accounted for, using mutually orthogonal sheets of light. Results of step flows, and zero and favorable pressure gradient flows are described.


2021 ◽  
Author(s):  
Zohreh Hosseinaee ◽  
Ben Ecclestone ◽  
Nicholas Pellegrino ◽  
Layla Khalili ◽  
Lyazzat Mukhangaliyeva ◽  
...  

2020 ◽  
Vol 27 (3) ◽  
pp. 737-745
Author(s):  
Zhijun Chi ◽  
Yingchao Du ◽  
Wenhui Huang ◽  
Chuanxiang Tang

A Thomson scattering X-ray source can provide quasi-monochromatic, continuously energy-tunable, polarization-controllable and high-brightness X-rays, which makes it an excellent tool for X-ray fluorescence computed tomography (XFCT). In this paper, we examined the suppression of Compton scattering background in XFCT using the linearly polarized X-rays and the implementation feasibility of linearly polarized XFCT based on this type of light source, concerning the influence of phantom attenuation and the sampling strategy, its advantage over K-edge subtraction computed tomography (CT), the imaging time, and the potential pulse pile-up effect by Monte Carlo simulations. A fan beam and pinhole collimator geometry were adopted in the simulation and the phantom was a polymethyl methacrylate cylinder inside which were gadolinium (Gd)-loaded water solutions with Gd concentrations ranging from 0.2 to 4.0 wt%. Compared with the case of vertical polarization, Compton scattering was suppressed by about 1.6 times using horizontal polarization. An accurate image of the Gd-containing phantom was successfully reconstructed with both spatial and quantitative identification, and good linearity between the reconstructed value and the Gd concentration was verified. When the attenuation effect cannot be neglected, one full cycle (360°) sampling and the attenuation correction became necessary. Compared with the results of K-edge subtraction CT, the contrast-to-noise ratio values of XFCT were improved by 2.03 and 1.04 times at low Gd concentrations of 0.2 and 0.5 wt%, respectively. When the flux of a Thomson scattering light source reaches 1013 photons s−1, it is possible to finish the data acquisition of XFCT at the minute or second level without introducing pulse pile-up effects.


2011 ◽  
Vol 3 ◽  
pp. 122-133 ◽  
Author(s):  
Yasuhiro Mukaigawa ◽  
Ramesh Raskar ◽  
Yasushi Yagi

Sign in / Sign up

Export Citation Format

Share Document