Study on the detection method of broken piece perforation and crater based on hyperbolic threshold segmentation

2021 ◽  
Author(s):  
ZHANG Jian-sheng ◽  
SUN Hao ◽  
Chao Li
2015 ◽  
Vol 741 ◽  
pp. 354-358 ◽  
Author(s):  
Yang Shan Tang ◽  
Dao Hua Xia ◽  
Gui Yang Zhang ◽  
Li Na Ge ◽  
Xin Yang Yan

For overcoming the shortage of Otsu method, proposed an improved Otsu threshold segmentation algorithm. On the basis of Otsu threshold segmentation algorithm, the gray level was divided into two classes according to the image segmentation, to determine the best threshold by comparing their center distance, so as to achieve peak line recognition under the condition of multiple gray levels. Then did experiments on image segmentation of the lane line with MATLAB by traditional Otsu threshold segmentation algorithm and the improved algorithm, the threshold of traditional Otsu threshold segmentation algorithm is 144 and the threshold of the improved Otsu threshold segmentation algorithm is 131, the processing time is within 0.453 s. Test results show that the white part markings appear more, the intersection place of white lines and the background is more clear, so this method can identify lane markings well and meet the real-time requirements.


2011 ◽  
Vol 317-319 ◽  
pp. 881-885
Author(s):  
Huan Wang ◽  
Su Lin Shao

This paper proposed a simple and robust lane markers detection method for intelligent vehicle navigation. It needs not calculate inverse perspective map. The method uses multiple threshold segmentation instead of single threshold segmentation. And straight and curve lane markers are directly extracted in Run-Length accumulation (RLA) images. It performs well in various complex conditions and costs less than 50 ms for a 352 by 288 image. Experiments on many kinds of real complex image sequences demonstrate the effectiveness and efficiency of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Huang ◽  
Yuanmin Fang ◽  
Xiaoqing Zuo ◽  
Xueqin Yu

This paper presents a new automatic change detection method of multitemporal remote sensing images based on 2D-Otsu algorithm improved by Firefly algorithm. The proposed method is designed to automatically extract the changing area between two temporal remote sensing images. First, two different temporal remote sensing images were acquired through difference value method of remote sensing images; then, the 2D-Otsu threshold segmentation principles are analyzed and the optimal threshold of 2D-Otsu threshold segmentation method is figured out by using the Firefly algorithm, where the difference images are conducted with binary classification to obtain the changing category and the nonchanging category; finally, the proposed method is used to carry out change detection experiments on the two selected areas, where a variety of methods are compared. Experimental results show that the proposed method can effectively and quickly extract the changing area between the two temporal remote sensing images; thus, it is an effective method of change detection for remote sensing images.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
Weihai Sun ◽  
Lemei Han

Machine fault detection has great practical significance. Compared with the detection method that requires external sensors, the detection of machine fault by sound signal does not need to destroy its structure. The current popular audio-based fault detection often needs a lot of learning data and complex learning process, and needs the support of known fault database. The fault detection method based on audio proposed in this paper only needs to ensure that the machine works normally in the first second. Through the correlation coefficient calculation, energy analysis, EMD and other methods to carry out time-frequency analysis of the subsequent collected sound signals, we can detect whether the machine has fault.


Sign in / Sign up

Export Citation Format

Share Document