High-resolution remote sensing vehicle automatic detection based on feature fusion convolutional neural network

2021 ◽  
Author(s):  
Xin Li ◽  
Kai Guo ◽  
Mutailifu Subei ◽  
Dudu Guo
Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1999 ◽  
Author(s):  
Donghang Yu ◽  
Qing Xu ◽  
Haitao Guo ◽  
Chuan Zhao ◽  
Yuzhun Lin ◽  
...  

Classifying remote sensing images is vital for interpreting image content. Presently, remote sensing image scene classification methods using convolutional neural networks have drawbacks, including excessive parameters and heavy calculation costs. More efficient and lightweight CNNs have fewer parameters and calculations, but their classification performance is generally weaker. We propose a more efficient and lightweight convolutional neural network method to improve classification accuracy with a small training dataset. Inspired by fine-grained visual recognition, this study introduces a bilinear convolutional neural network model for scene classification. First, the lightweight convolutional neural network, MobileNetv2, is used to extract deep and abstract image features. Each feature is then transformed into two features with two different convolutional layers. The transformed features are subjected to Hadamard product operation to obtain an enhanced bilinear feature. Finally, the bilinear feature after pooling and normalization is used for classification. Experiments are performed on three widely used datasets: UC Merced, AID, and NWPU-RESISC45. Compared with other state-of-art methods, the proposed method has fewer parameters and calculations, while achieving higher accuracy. By including feature fusion with bilinear pooling, performance and accuracy for remote scene classification can greatly improve. This could be applied to any remote sensing image classification task.


2021 ◽  
Vol 87 (8) ◽  
pp. 577-591
Author(s):  
Fengpeng Li ◽  
Jiabao Li ◽  
Wei Han ◽  
Ruyi Feng ◽  
Lizhe Wang

Inspired by the outstanding achievement of deep learning, supervised deep learning representation methods for high-spatial-resolution remote sensing image scene classification obtained state-of-the-art performance. However, supervised deep learning representation methods need a considerable amount of labeled data to capture class-specific features, limiting the application of deep learning-based methods while there are a few labeled training samples. An unsupervised deep learning representation, high-resolution remote sensing image scene classification method is proposed in this work to address this issue. The proposed method, called contrastive learning, narrows the distance between positive views: color channels belonging to the same images widens the gaps between negative view pairs consisting of color channels from different images to obtain class-specific data representations of the input data without any supervised information. The classifier uses extracted features by the convolutional neural network (CNN)-based feature extractor with labeled information of training data to set space of each category and then, using linear regression, makes predictions in the testing procedure. Comparing with existing unsupervised deep learning representation high-resolution remote sensing image scene classification methods, contrastive learning CNN achieves state-of-the-art performance on three different scale benchmark data sets: small scale RSSCN7 data set, midscale aerial image data set, and large-scale NWPU-RESISC45 data set.


2018 ◽  
Vol 10 (9) ◽  
pp. 1461 ◽  
Author(s):  
Yongyang Xu ◽  
Zhong Xie ◽  
Yaxing Feng ◽  
Zhanlong Chen

The road network plays an important role in the modern traffic system; as development occurs, the road structure changes frequently. Owing to the advancements in the field of high-resolution remote sensing, and the success of semantic segmentation success using deep learning in computer version, extracting the road network from high-resolution remote sensing imagery is becoming increasingly popular, and has become a new tool to update the geospatial database. Considering that the training dataset of the deep convolutional neural network will be clipped to a fixed size, which lead to the roads run through each sample, and that different kinds of road types have different widths, this work provides a segmentation model that was designed based on densely connected convolutional networks (DenseNet) and introduces the local and global attention units. The aim of this work is to propose a novel road extraction method that can efficiently extract the road network from remote sensing imagery with local and global information. A dataset from Google Earth was used to validate the method, and experiments showed that the proposed deep convolutional neural network can extract the road network accurately and effectively. This method also achieves a harmonic mean of precision and recall higher than other machine learning and deep learning methods.


2021 ◽  
Vol 13 (21) ◽  
pp. 4237
Author(s):  
Xiaoping Zhang ◽  
Bo Cheng ◽  
Jinfen Chen ◽  
Chenbin Liang

Agricultural greenhouses (AGs) are an important component of modern facility agriculture, and accurately mapping and dynamically monitoring their distribution are necessary for agricultural scientific management and planning. Semantic segmentation can be adopted for AG extraction from remote sensing images. However, the feature maps obtained by traditional deep convolutional neural network (DCNN)-based segmentation algorithms blur spatial details and insufficient attention is usually paid to contextual representation. Meanwhile, the maintenance of the original morphological characteristics, especially the boundaries, is still a challenge for precise identification of AGs. To alleviate these problems, this paper proposes a novel network called high-resolution boundary refined network (HBRNet). In this method, we design a new backbone with multiple paths based on HRNetV2 aiming to preserve high spatial resolution and improve feature extraction capability, in which the Pyramid Cross Channel Attention (PCCA) module is embedded to residual blocks to strengthen the interaction of multiscale information. Moreover, the Spatial Enhancement (SE) module is employed to integrate the contextual information of different scales. In addition, we introduce the Spatial Gradient Variation (SGV) unit in the Boundary Refined (BR) module to couple the segmentation task and boundary learning task, so that they can share latent high-level semantics and interact with each other, and combine this with the joint loss to refine the boundary. In our study, GaoFen-2 remote sensing images in Shouguang City, Shandong Province, China are selected to make the AG dataset. The experimental results show that HBRNet demonstrates a significant improvement in segmentation performance up to an IoU score of 94.89%, implying that this approach has advantages and potential for precise identification of AGs.


Sign in / Sign up

Export Citation Format

Share Document