All-optical patterning of 3D microstructures in azo polymers: toward a full control of the molecular order

Author(s):  
Celine Fiorini ◽  
Jean-Michel Nunzi ◽  
Fabrice Charra ◽  
Paul Raimond
2019 ◽  
Vol 512 ◽  
pp. 112-131 ◽  
Author(s):  
Volodymyr M. Kryshenik ◽  
Yuriy M. Azhniuk ◽  
Victor S. Kovtunenko

2010 ◽  
Vol 23 (6) ◽  
pp. 757-764 ◽  
Author(s):  
Oksana V. Sakhono ◽  
Joachim Stumpe ◽  
Leonid M. Goldenberg ◽  
Tatiana N. Smirnova ◽  
Lyudmila M. Kokhtych

Nano Letters ◽  
2010 ◽  
Vol 10 (11) ◽  
pp. 4302-4308 ◽  
Author(s):  
Mason J. Guffey ◽  
Norbert F. Scherer

2001 ◽  
Vol 5 (6) ◽  
pp. 487-494 ◽  
Author(s):  
Kevin G. Yager ◽  
Christopher J. Barrett

Author(s):  
R. Hegerl ◽  
A. Feltynowski ◽  
B. Grill

Till now correlation functions have been used in electron microscopy for two purposes: a) to find the common origin of two micrographs representing the same object, b) to check the optical parameters e. g. the focus. There is a third possibility of application, if all optical parameters are constant during a series of exposures. In this case all differences between the micrographs can only be caused by different noise distributions and by modifications of the object induced by radiation.Because of the electron noise, a discrete bright field image can be considered as a stochastic series Pm,where i denotes the number of the image and m (m = 1,.., M) the image element. Assuming a stable object, the expectation value of Pm would be Ηm for all images. The electron noise can be introduced by addition of stationary, mutual independent random variables nm with zero expectation and the variance. It is possible to treat the modifications of the object as a noise, too.


Author(s):  
Weiping Liu ◽  
Jennifer Fung ◽  
W.J. de Ruijter ◽  
Hans Chen ◽  
John W. Sedat ◽  
...  

Electron tomography is a technique where many projections of an object are collected from the transmission electron microscope (TEM), and are then used to reconstruct the object in its entirety, allowing internal structure to be viewed. As vital as is the 3-D structural information and with no other 3-D imaging technique to compete in its resolution range, electron tomography of amorphous structures has been exercised only sporadically over the last ten years. Its general lack of popularity can be attributed to the tediousness of the entire process starting from the data collection, image processing for reconstruction, and extending to the 3-D image analysis. We have been investing effort to automate all aspects of electron tomography. Our systems of data collection and tomographic image processing will be briefly described.To date, we have developed a second generation automated data collection system based on an SGI workstation (Fig. 1) (The previous version used a micro VAX). The computer takes full control of the microscope operations with its graphical menu driven environment. This is made possible by the direct digital recording of images using the CCD camera.


Author(s):  
Christopher Viney

Light microscopy is a convenient technique for characterizing molecular order in fluid liquid crystalline materials. Microstructures can usually be observed under the actual conditions that promote the formation of liquid crystalline phases, whether or not a solvent is required, and at temperatures that can range from the boiling point of nitrogen to 600°C. It is relatively easy to produce specimens that are sufficiently thin and flat, simply by confining a droplet between glass cover slides. Specimens do not need to be conducting, and they do not have to be maintained in a vacuum. Drybox or other controlled environmental conditions can be maintained in a sealed chamber equipped with transparent windows; some heating/ freezing stages can be used for this purpose. It is relatively easy to construct a modified stage so that the generation and relaxation of global molecular order can be observed while specimens are being sheared, simulating flow conditions that exist during processing. Also, light only rarely affects the chemical composition or molecular weight distribution of the sample. Because little or no processing is required after collecting the sample, one can be confident that biologically derived materials will reveal many of their in vivo structural characteristics, even though microscopy is performed in vitro.


1988 ◽  
Vol 49 (C2) ◽  
pp. C2-459-C2-462 ◽  
Author(s):  
F. A.P. TOOLEY ◽  
B. S. WHERRETT ◽  
N. C. CRAFT ◽  
M. R. TAGHIZADEH ◽  
J. F. SNOWDON ◽  
...  
Keyword(s):  

Undoubtedly is a technological revolution that has certainly focused on the interest of software development companies, companies of IT, hardware design, networks and artificial intelligence. A technological revolution that started a few years ago and has evolved rapidly, thanks to the technological evolution of IT and networks. It is a combination of many communication protocols, sensors and other intelligent technologies, the correlation between smart technologies, networks and services that all together complete processes in order to achieve the result for which they were installed. In advanced technology countries, both simple users and industry use IoT where sensors are simplified and automated at home and in industry, there is continuous monitoring, control and prediction of product failure for the benefit of efficient production of high quality products and control production at each stage of product processing / production. Someone could well think and say that all this is fantastic and that we have solved the problem of organization, easy life without further thoughts and worries since everything is done automatically.An IoT in an intelligent house could literally regulate everything, using sensors and appropriate software could talk with a human person, as well as someone could appropriately entice all that security and literally take full control of the premises of a home with consequences from minimal to catastrophic including the complete destruction of a home.


Sign in / Sign up

Export Citation Format

Share Document