Finite element analysis on reduction of the cross talk in ultrasonic transducers

Author(s):  
Yongrae R. Roh ◽  
Youngshin Kim ◽  
Kookjin Kang
2013 ◽  
Vol 838-841 ◽  
pp. 284-296
Author(s):  
Yu Hua Wang ◽  
Bei Bei Wang ◽  
Pei Chi ◽  
Jun Dong

The finite element analysis method was adopted to simulate the masonry wall strengthened with steel strips and was verified by comparing with test results. The influence rules of two factors including the cross sectional area of steel strips and vertical compression were investigated. The results show that, as for unreinforced masonry wall, the relationship of the shear capacity of unreinforced masonry wall and the vertical compressive strain is linear under lateral load; the speed of stiffness degeneration is accelerated after the peak point of the curves, but decrease with the increasing of lateral displacement. As for masonry wall strengthened with steel strips, the shear capacity increases significantly, and shows nonlinear relationship with the cross section area of the steel strips and vertical compression; ductility is improved. Finally, a computational formula of shear capacity based on a lot of parametric analysis is proposed to calculate the sectional dimension of steel strips, and it provides theoretical foundation for establishing thorough design method of masonry wall strengthened with steel strips.


2008 ◽  
Vol 2 (1) ◽  
Author(s):  
Milton E. Aguirre ◽  
Mary Frecker

A size and shape optimization routine is developed for a 1.0mm diameter multifunctional instrument for minimally invasive surgery. The instrument is a compliant mechanism capable of both grasping and cutting. Multifunctional instruments are expected to be beneficial in the operating room because of their ability to perform multiple surgical tasks, thereby decreasing the total number of instrument exchanges in a single procedure. With fewer instrument exchanges, the risk of inadvertent tissue trauma as well as overall surgical time and costs are reduced. The focus of this paper is to investigate the performance effects of allowing the cross-sectional area along the length of the device to vary. This investigation is accomplished by defining various cross-sectional segments in terms of parametric variables and optimizing the dimensions of the instrument to provide a sufficient opening of the forceps jaws while maintaining adequate cutting and grasping forces. Two optimization problems are considered. First, all parametric segments are set equal to one another to achieve size optimization. Second, each segment is allowed to vary independently, thereby achieving shape optimization. Large deformation finite element analysis and optimization are conducted using ANSYS®. Finally, prototypes are fabricated using wire EMD and experiments are conducted to evaluate the instrument performance. As a result of allowing the cross-sectional area to vary, i.e., conducting shape optimization, the forceps and scissors blocked forces increased by as much as 83.2% and 87%, respectively. During prototype evaluations, it is found that the finite element analysis predictions were within 10% of the measured tool performance. Therefore, for this application, it is concluded that performing shape optimization does significantly influence the performance of the instrument.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110406
Author(s):  
Wentao Song ◽  
Weicheng Cui

A proper criterion to guide how to determine the cross-section diameter of non-standard large-sized O-rings used in deep-ocean pressure chambers (DOPCs) is absent. To design a large-sized O-ring only by scale-up could be a lack of persuasiveness, and it will probably cause the increase of cost. This paper gives a detailed study on the static sealing performance of O-rings by finite element analysis (FEA). The results show that the influence of the inside diameter of O-rings can be ignored, and the O-rings with a large cross-section diameter may not be applicable to the high-pressure DOPCs, but it can allow a larger sealing clearance to be used in the low-pressure DOPCs. The reference values of safe sealing pressure with different cross-section diameters and different sealing clearances are ascertained. An improved criterion to guide how to determine the cross-section diameter of non-standard large-sized O-rings used in DOPCs is proposed. The results obtained in this paper can provide a more convincing guideline for the O-ring sealing design not only in DOPCs but also in the similar pressure vessels.


2013 ◽  
Vol 395-396 ◽  
pp. 481-484
Author(s):  
Ri Liang Li ◽  
Ya Feng Xu ◽  
Shou Yan Bai

In order to study the force capacity of the cross steel reinforced concrete special-shaped column in horizontal load, the finite element analysis software ABAQUS has been used. We adopt a horizontal direction displacement loading method to apply horizontal load, and its displacement is 20mm. We simulate the stress distribution of the six rates of steel bone and the six different cross section sizes of steel reinforced concrete special-shaped columns. According to the result, the load - displacement curve has been dropped, and we analyze the mechanical properties of cross steel reinforced concrete special-shaped column by the curve. The results show that the bearing capacity of cross steel reinforced concrete special-shaped column has improved with the increasing of rate of steel bone and the cross section size.


Sign in / Sign up

Export Citation Format

Share Document