Temperature monitoring inside IGBT modules at forward bias from the cross section and its finite element analysis

2018 ◽  
Vol 83 ◽  
pp. 187-197 ◽  
Author(s):  
Yongle Huang ◽  
Yifei Luo ◽  
Fei Xiao ◽  
Binli Liu
2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110406
Author(s):  
Wentao Song ◽  
Weicheng Cui

A proper criterion to guide how to determine the cross-section diameter of non-standard large-sized O-rings used in deep-ocean pressure chambers (DOPCs) is absent. To design a large-sized O-ring only by scale-up could be a lack of persuasiveness, and it will probably cause the increase of cost. This paper gives a detailed study on the static sealing performance of O-rings by finite element analysis (FEA). The results show that the influence of the inside diameter of O-rings can be ignored, and the O-rings with a large cross-section diameter may not be applicable to the high-pressure DOPCs, but it can allow a larger sealing clearance to be used in the low-pressure DOPCs. The reference values of safe sealing pressure with different cross-section diameters and different sealing clearances are ascertained. An improved criterion to guide how to determine the cross-section diameter of non-standard large-sized O-rings used in DOPCs is proposed. The results obtained in this paper can provide a more convincing guideline for the O-ring sealing design not only in DOPCs but also in the similar pressure vessels.


2013 ◽  
Vol 395-396 ◽  
pp. 481-484
Author(s):  
Ri Liang Li ◽  
Ya Feng Xu ◽  
Shou Yan Bai

In order to study the force capacity of the cross steel reinforced concrete special-shaped column in horizontal load, the finite element analysis software ABAQUS has been used. We adopt a horizontal direction displacement loading method to apply horizontal load, and its displacement is 20mm. We simulate the stress distribution of the six rates of steel bone and the six different cross section sizes of steel reinforced concrete special-shaped columns. According to the result, the load - displacement curve has been dropped, and we analyze the mechanical properties of cross steel reinforced concrete special-shaped column by the curve. The results show that the bearing capacity of cross steel reinforced concrete special-shaped column has improved with the increasing of rate of steel bone and the cross section size.


2014 ◽  
Vol 986-987 ◽  
pp. 927-930
Author(s):  
Yi Zhu ◽  
Bo Li ◽  
Hao Wang ◽  
Kun Li

Put the finite element analysis of line tower coupling modeling to the collapse of a 110 kV line straight-line tower, study the effect of strong wind on transmission tower and wire. The results show that under the action of strong wind, the material specification selected by the part of the rods on the type of tower is lower, cross section is smaller, the principal material of tower will be instable and flexional under the compression, resulting in tower collapsed.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2969 ◽  
Author(s):  
Jagodzinski ◽  
Kruse ◽  
Barroi ◽  
Mildebrath ◽  
Langner ◽  
...  

The Collaborative Research Centre 1153 (CRC 1153) “Process chain for the production of hybrid high-performance components through tailored forming” aims to develop new process chains for the production of hybrid bulk components using joined semi-finished workpieces. The subproject B1 investigates the formability of hybrid parts using cross-wedge rolling. This study investigates the reduction of the coating thickness of coaxially arranged semi-finished hybrid parts through cross-wedge rolling. The investigated parts are made of two steels (1.0460 and 1.4718) via laser cladding with hot-wire. The rolling process is designed by finite element (FE)-simulations and later experimentally investigated. Research priorities include investigations of the difference in the coating thickness of the laser cladded 1.4718 before and after cross-wedge rolling depending on the wedge angle β, cross-section reduction ∆A, and the forming speed ν. Also, the simulations and the experimental trials are compared to verify the possibility of predicting the thickness via finite element analysis (FEA). The main finding was the ability to describe the forming behavior of coaxially arranged hybrid parts at a cross-section reduction of 20% using FEA. For a cross-section reduction of 70% the results showed a larger deviation between simulation and experimental trials. The deviations were between 0.8% and 26.2%.


2011 ◽  
Vol 147 ◽  
pp. 157-160 ◽  
Author(s):  
Yong Zeng ◽  
Hong Mei Tan

Due to its outstanding aerodynamic shape and light weight, the trapezoidal cross-section flat steel box girder with orthotropic decks and thin-walled longitudinal stiffeners of trapezoidal cross section are widely used in long-span suspension bridges in the world. However, because of the geometrical characteristics and the relative flexibility of their components, these structures may be quite susceptible to traffic loadings that fatigue cracks tend to appear in these structures. In this paper, Jiangyin Bridge is used as a case study to investigate the fatigue performance of the steel girders of suspension bridge Jiangyin Bridge is the second longest bridge in China, which has the main span of 1385m. The stress analysis of steel box girders is firstly carried out based on the analysis of fatigue life. Fatigue assessment method is proposed on the basis of in-situ measurement data combined with finite element analysis. A complete fatigue assessment is made in this paper. Key words: flat steel box girder; orthotropic decks; finite element analysis; fatigue assessment


2013 ◽  
Vol 838-841 ◽  
pp. 284-296
Author(s):  
Yu Hua Wang ◽  
Bei Bei Wang ◽  
Pei Chi ◽  
Jun Dong

The finite element analysis method was adopted to simulate the masonry wall strengthened with steel strips and was verified by comparing with test results. The influence rules of two factors including the cross sectional area of steel strips and vertical compression were investigated. The results show that, as for unreinforced masonry wall, the relationship of the shear capacity of unreinforced masonry wall and the vertical compressive strain is linear under lateral load; the speed of stiffness degeneration is accelerated after the peak point of the curves, but decrease with the increasing of lateral displacement. As for masonry wall strengthened with steel strips, the shear capacity increases significantly, and shows nonlinear relationship with the cross section area of the steel strips and vertical compression; ductility is improved. Finally, a computational formula of shear capacity based on a lot of parametric analysis is proposed to calculate the sectional dimension of steel strips, and it provides theoretical foundation for establishing thorough design method of masonry wall strengthened with steel strips.


Author(s):  
Gao-Lian Liu

The untwist of rotating blades in turbomachines treated so far in the literatare simply as a pure elasticity problem is generalized and formulated rigorously as a problem of aeroelasticity by variational principles (VPs) and generalized VP (GVP). It takes into account not only the centrifugal force, but also the aeroelastic interaction between blades and the flow as well as the elastic distortion of the cross section shape of blades, assuming the material to be linearly elastic but nonisotropic. Thus, a new rigorous theoretical basis for the finite element analysis of blade untwist in turbomachine design is provided.


Author(s):  
Dag Fergestad ◽  
Frank Klæbo ◽  
Jan Muren ◽  
Pål Hylland ◽  
Tom Are Grøv ◽  
...  

This paper discusses the structural challenges associated with high axial temperature gradients and the corresponding internal cross section forces. A representative flexible pipe section designed for high operational temperature has been subject to full scale testing with temperature profiles obtained by external heating and cooling. The test is providing detailed insight in onset and magnitude of relative layer movements and layer forces. As part of the full-scale testing, novel methods for temperature gradient testing of unbonded flexible pipes have been developed, along with layer force- and deflection-measurement techniques. The full-scale test set-up has been subject to numerous temperature cycles of various magnitudes, gradients, absolute temperatures, as well as tension cycling to investigate possible couplings to dynamics. Extensive use of finite element analysis has efficiently supported test planning, instrumentation and execution, as well as enabling increased understanding of the structural interaction within the unbonded flexible pipe cross section. When exploiting the problem by finite element analysis, key inputs will be correct material models for the polymeric layers, and as-built dimensions/thicknesses. Finding the balance between reasonable simplification and model complexity is also a challenge, where access to high quality full-scale tests and dissected pipes coming back from operation provides good support for these decisions. Considering the extensive full scale testing, supported by advanced finite element analysis, it is evident that increased attention will be needed to document reliable operation in the most demanding high temperature flexible pipe applications.


Sign in / Sign up

Export Citation Format

Share Document