Effect of geometric nonlinearity on acoustic modulation

Author(s):  
Kraig Warnemuende ◽  
Hwai-Chung Wu
2020 ◽  
Vol 92 (6) ◽  
pp. 3-12
Author(s):  
A.G. KOLESNIKOV ◽  

Geometric nonlinearity shallow shells on a square and rectangular plan with constant and variable thickness are considered. Loss of stability of a structure due to a decrease in the rigidity of one of the support (transition from fixed support to hinged support) is considered. The Bubnov-Galerkin method is used to solve differential equations of shallow geometrically nonlinear shells. The Vlasov's beam functions are used for approximating. The use of dimensionless quantities makes it possible to repeat the calculations and obtain similar dependences. The graphs are given that make it possible to assess the reduction in the critical load in the shell at each stage of reducing the rigidity of the support and to predict the further behavior of the structure. Regularities of changes in internal forces for various types of structure support are shown. Conclusions are made about the necessary design solutions to prevent the progressive collapse of the shell due to a decrease in the rigidity of one of the supports.


2022 ◽  
Vol 162 ◽  
pp. 108054
Author(s):  
Xiaoshu Qin ◽  
Chang Peng ◽  
Gaozheng Zhao ◽  
Zengye Ju ◽  
Shanshan Lv ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James Trujillo ◽  
Asli Özyürek ◽  
Judith Holler ◽  
Linda Drijvers

AbstractIn everyday conversation, we are often challenged with communicating in non-ideal settings, such as in noise. Increased speech intensity and larger mouth movements are used to overcome noise in constrained settings (the Lombard effect). How we adapt to noise in face-to-face interaction, the natural environment of human language use, where manual gestures are ubiquitous, is currently unknown. We asked Dutch adults to wear headphones with varying levels of multi-talker babble while attempting to communicate action verbs to one another. Using quantitative motion capture and acoustic analyses, we found that (1) noise is associated with increased speech intensity and enhanced gesture kinematics and mouth movements, and (2) acoustic modulation only occurs when gestures are not present, while kinematic modulation occurs regardless of co-occurring speech. Thus, in face-to-face encounters the Lombard effect is not constrained to speech but is a multimodal phenomenon where the visual channel carries most of the communicative burden.


2017 ◽  
Vol 116 ◽  
pp. 37-52 ◽  
Author(s):  
Jian Li ◽  
Chang-Yu Zhou ◽  
Le Chang ◽  
Xin-Ting Miao ◽  
Xiao-Hua He

Author(s):  
Koki Yamada ◽  
Yuga Shigeyoshi ◽  
Shuangjing Chen ◽  
Yoshiki Nishi

Abstract Purpose This study elucidated the effect of an inclined spring arrangement on the flow-induced vibration of a circular cylinder to understand if the effect enhances the harnessing of the energy of fluid flows. Method An experiment was conducted on a circulating water channel. A circular cylinder was partially submerged. It was elastically supported by two springs whose longitudinal directions were varied. With the speed of the water flow varied, the vibrations of the circular cylinder were measured. The measured vibrations were interpreted by la linear dynamic model. Results and discussion In a few cases, a jump in response amplitudes from zero to the maximum was observed with the spring inclination at reduced velocities of 6 to 7, whereas gradually increasing response amplitudes were observed in other cases. The inclined spring arrangement achieved greater velocity amplitudes than in cases without spring inclination. A theoretical evaluation of the measured responses indicates that the effect of the inclined springs was caused by geometric nonlinearity; the effect would be more prominent by employing a longer moment lever.


2020 ◽  
pp. 115846
Author(s):  
Hou Qiao ◽  
Zeng He ◽  
Wen Jiang ◽  
Lin Yang ◽  
Weicai Peng

Sign in / Sign up

Export Citation Format

Share Document