Fiber Bragg grating sensors for temperature measurement using phase retrieval

2005 ◽  
Author(s):  
Waldemar Wojcik ◽  
Piotr Kisala ◽  
Slawomir Cieszczyk
2020 ◽  
Vol 314 ◽  
pp. 112266
Author(s):  
Ranjana Seema ◽  
Soumen Mandal ◽  
Preeti Singh ◽  
Souvik Paul ◽  
Nripen Chanda

2004 ◽  
Author(s):  
Piotr A. Kisaka ◽  
Elzbieta M. Beres-Pawlik ◽  
Jan Wojcik ◽  
Waldemar Wojcik

2021 ◽  
Vol 7 (3) ◽  
pp. 6-10
Author(s):  
Hedi Bellil ◽  
◽  
Mustafa A.G. Abushagur ◽  

We propose here a new technique for simultaneous strain and temperature measurement using a Fiber Bragg Grating sensors. This technique employs an interferometric detection using two Fiber Bragg Gratings. A fiber Bragg grating is used as a reference while another fiber Bragg grating and a length of a bare fiber are used as the two sensing elements. As the temperature and strain change, the length of the sensing elements, (Fiber and Fiber Bragg Grating) change. These changes result in a phase and wavelength shifts. To measure these effects we use a Folded Mach Zhender interferometer, and a detection system made out of two photodiodes and data processing system. The sensitivity and dynamic range are analyzed and presented.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4272
Author(s):  
Oscar de la Torre ◽  
Ignazio Floris ◽  
Salvador Sales ◽  
Xavier Escaler

The present paper assesses the performance and characteristics of fiber Bragg grating sensors, with a special interest in their applications in hydraulic machinery and systems. The hydropower industry is turning to this technology with high expectations of obtaining high quality data to validate and calibrate numerical models that could be used as digital twins of key assets, further strengthening the sector’s relevant position within industry 4.0. Prior to any validation, fiber Bragg grating sensors’ ability to perform well underwater for long periods of time with minimal degradation, and their ease of scalability, drew the authors´ attention. A simplified modal analysis of a partially submerged beam is proposed here as a first step to validate the potential of this type of technology for hydropower applications. Fiber Bragg grating sensors are used to obtain the beam’s natural frequencies and to damp vibrations under different conditions. The results are compared with more established waterproof electric strain gauges and a laser vibrometer with good agreement. The presence of several sensors in a single fiber ensures high spatial resolution, fundamental to precisely determine vibration patterns, which is a main concern in this industry. In this work, the beam’s vibration patterns have been successfully captured under different excitations and conditions.


2016 ◽  
Author(s):  
Saurabh Kumar ◽  
V. Shrikanth ◽  
Bharadwaj Amrutur ◽  
Sundarrajan Asokan ◽  
M. S. Bobji

Sign in / Sign up

Export Citation Format

Share Document