Apparatus for endoscopical, laser-based determination of ciliary beat frequency

Author(s):  
N. Bogdanovic ◽  
B. Krattiger ◽  
J. Ricka ◽  
M. Frenz
1995 ◽  
Vol 115 (3) ◽  
pp. 438-442 ◽  
Author(s):  
P. J. Schuil ◽  
M. Ten Berge ◽  
J. M. E. Van Gelder ◽  
K. Graamans ◽  
E. H. Huizing

2014 ◽  
Vol 129 (S1) ◽  
pp. S45-S50 ◽  
Author(s):  
J H Kim ◽  
J Rimmer ◽  
N Mrad ◽  
S Ahmadzada ◽  
R J Harvey

AbstractObjective:This study investigated the effect of Betadine on ciliated human respiratory epithelial cells.Methods:Epithelial cells from human sinonasal mucosa were cultured at the air–liquid interface. The cultures were tested with Hanks' balanced salt solution containing 10 mM HEPES (control), 100 µM ATP (positive control), 5 per cent Betadine or 10 per cent Betadine (clinical dose). Ciliary beat frequency was analysed using a high-speed camera on a computer imaging system.Results:Undiluted 10 per cent Betadine (n = 6) decreased the proportion of actively beating cilia over 1 minute (p < 0.01). Ciliary beat frequency decreased from 11.15 ± 4.64 Hz to no detectable activity. The result was similar with 5 per cent Betadine (n = 7), with no significant difference compared with the 10 per cent solution findings.Conclusion:Betadine, at either 5 and 10 per cent, was ciliotoxic. Caution should be applied to the use of topical Betadine solution on the respiratory mucosal surface.


1998 ◽  
Vol 12 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Mark Jorissen

Mucociliary transport is one of the most important defense mechanisms of the airway. Mucociliary transport time or rate, as measured using the saccharin test or the radioisotope technique, respectively, is clinically the most relevant parameter, although subject to large intra- and interindividual variability. There is no correlation between mucociliary transport in vivo and ciliary beat frequency ex vivo. Preliminary evidence demonstrates that mucociliary transport correlates with ciliary structure and orientation as investigated with transmission and scanning electron microscopy. A correlation is presented between ciliary beat frequency and secondary ciliary abnormalities. This correlation can best be described according to the logistic sigmoid model (r = 0.69). Based on these functional data, an ultrastructural distinction is proposed among normal (less than 5%), light (5 to 15%), moderate (15 to 25%), and severe (more than 25%) secondary ciliary dyskinesia.


2005 ◽  
Vol 19 (4) ◽  
pp. 353-357 ◽  
Author(s):  
Mônica Aidar Menon-Miyake ◽  
Regiani Carvalho de Oliveira ◽  
Geraldo Lorenzi-Filho ◽  
Paulo Hilário Nascimento Saldiva ◽  
Ossamu Butugan

Background Luffa operculata is a medicinal plant used in homeopathic and alternative medicine. In the United States, it is sold in a purified spray form, whereas a homemade L. operculata dry fruit infusion (DFI) is commonly used in Latin America. The L. operculata DFI is applied intranasally, inducing profuse mucous secretion and relieving nasal symptoms. Nevertheless, this medication may cause irritation of the nasal mucosa, as well as epistaxis or anosmia. Given the growing popularity of alternative medicine, a decision was made to evaluate the effects of this substance on mucous membranes. Methods The effects of L. operculata DFI on mucociliary transport velocity, ciliary beat frequency, and transepithelial potential difference (PD) were evaluated in an isolated frog palate preparation. We tested 46 palates immediately before immersion and again at 5 and 20 minutes after immersion. Four groups (n = 10) were tested in frog Ringer: control; L. operculata DFI, 60 mg/L; 600 mg/L; and 1200 mg/L. An additional group was tested using L. operculata DFI prepared with water (600 mg/L of H2O, n = 6). Epithelial samples were harvested for ultrastructural study. Results In treated palates, mucociliary transport velocity and ciliary beat frequency decreased significantly (p < 0.001 and p < 0.008, respectively). There was a dose-dependent decrease in PD modulus (p < .007). Our PD findings indicated ion-fluid transport abnormalities, which were confirmed by transmission electron microscopy that showed enlargement of interepithelial spaces. Conclusion In this ex vivo model, the L. operculata DFI infusion promoted significant changes in the mucociliary function of the epithelium, suggesting that it is potentially noxious to human nasal mucosa.


Sign in / Sign up

Export Citation Format

Share Document