human nasal mucosa
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 16)

H-INDEX

38
(FIVE YEARS 1)

Author(s):  
Maedeh Entezari ◽  
◽  
Mehrdad Bakhtiari ◽  
Fatemeh Moradi ◽  
Masoud Mozafari ◽  
...  

Strategies of Schwann cell (SC) transplantation for regeneration of peripheral nerve injury involve many limitations. Stem cells can be used as alternative cell source for differentiation into Schwann cells. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ectomesenchymal stem cells (OE-MSCs) derived from neural crest can spontaneously differentiate into SC lineage. OE-MSCs were isolated from human nasal mucosa and characterized by the mesenchymal and neural crest markers. The cells were cultured in glial growth factors-free medium and further investigated in terms of the phenotypic and functional properties. Immunocytochemical staining and real-time PCR analysis indicated that the cultured OE-MSCs expressed SCs markers, SOX10, p75, S100, GFAP and MBP, differentiation indicative. It was found that the cells could secrete neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Furthermore, after co-cultured with PC12, the mean neurite length was enhanced by OE-MSCs. The findings indicated that OE-MSCs could be differentiated spontaneously into SC-like phenotypes, suggesting their applications for transplantation in peripheral nerve injuries.Strategies of Schwann cell (SC) transplantation for regeneration of peripheral nerve injury involve many limitations. Stem cells can be used as alternative cell source for differentiation into Schwann cells. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ectomesenchymal stem cells (OE-MSCs) derived from neural crest can spontaneously differentiate into SC lineage. OE-MSCs were isolated from human nasal mucosa and characterized by the mesenchymal and neural crest markers. The cells were cultured in glial growth factors-free medium and further investigated in terms of the phenotypic and functional properties. Immunocytochemical staining and real-time PCR analysis indicated that the cultured OE-MSCs expressed SCs markers, SOX10, p75, S100, GFAP and MBP, differentiation indicative. It was found that the cells could secrete neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Furthermore, after co-cultured with PC12, the mean neurite length was enhanced by OE-MSCs. The findings indicated that OE-MSCs could be differentiated spontaneously into SC-like phenotypes, suggesting their applications for transplantation in peripheral nerve injuries.


Author(s):  
Thi Nga Nguyen ◽  
Hideaki Suzuki ◽  
Jun-ichi Ohkubo ◽  
Tetsuro Wakasugi ◽  
Takuro Kitamura

<b><i>Background:</i></b> The ciliary beat of the airway epithelium, including the sinonasal epithelium, has a significant role in frontline defense and is thought to be controlled by the level of intracellular Ca<sup>2+</sup>. Involvement of calmodulin and adenylate/guanylate cyclases in the regulation of ciliary beats has been reported, and here we investigated the interrelation between these components of the ciliary beat regulatory pathway. <b><i>Methods:</i></b> The inferior turbinates were collected from 29 patients with chronic hypertrophic rhinitis/rhinosinusitis during endoscopic sinonasal surgery. The turbinate mucosa was cut into thin strips, and mucociliary movement was observed under a phase-contrast light microscope equipped with a high-speed digital video camera. <b><i>Results:</i></b> The ciliary beat frequency (CBF) was significantly increased by stimulation with 100 μM CALP3 (calmodulin agonist), which was completely suppressed by adding 100 µM SQ22536 (adenylate cyclase inhibitor) and 10 µM ODQ (guanylate cyclase inhibitor) together and by adding 1 µM KT5720 (protein kinase A inhibitor) and 1 µM KT5823 (protein kinase G inhibitor) together. The CBF was significantly increased by stimulation with 10 µM forskolin (adenylate cyclase activator) and 10 µM BAY41-2272 (guanylate cyclase activator) and by stimulation with 100 µM 8-bromo-cAMP (cAMP analog) and 100 µM 8-bromo-cGMP (cGMP analog), which was not changed by adding 1 µM calmidazolium (calmodulin antagonist). <b><i>Conclusions:</i></b> These results confirmed that the regulatory pathway of ciliary beats in the human nasal mucosa involves calmodulin, adenylate/guanylate cyclases, and protein kinases A/G and indicate that adenylate/guanylate cyclases and protein kinases A/G act downstream of calmodulin, but not vice versa, and that these cyclases relay calmodulin signaling.


2021 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Marija Podlesnaja ◽  
Mara Pilmane ◽  
Gunta Sumeraga

The nasal cavity lined by nasal mucosa, is a significant part of respiratory system of human. However, there are no studies aimed to detect a molecular phenotype of healthy and normal functioning nasal mucosa, obtained after rhinoseptoplasty procedure, to understand its physiology and growth and inflammation processes. Thus, our aim is to identify human healthy nasal mucosa cytokines, neuropeptide-containing innervation and cell proliferation markers to form a control group for further tissue investigation of human nasal polyposis as the next step of our research. The study included surgery materials from 17 healthy humans. Biotin-streptavidin immunohistochemistry was performed for detection of tissue PGP9.5, Ki-67, β-Defensin 2, IL-1, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12. Results were evaluated semi-quantitatively and by Friedman ANOVA and Spearman rang correlation tests. All factors were more widely expressed by superficial epithelium than by glandular one. Abundance of ILs-8, -10 and -12 positive cells was detected in comparison with moderate to numerous distributions of IL-1, IL-6 and β-Defensin 2. Moderate number of PGP 9.5-containing nerve fibers and only few to moderate Ki-67 positive cells were found in healthy nasal mucosa. We revealed statistically significant difference between Ki-67 and ILs-4, -6, -7, -8, -10, -12 both in healthy nasal mucosa superficial and glandular epithelium. From nasal epithelia, commonly the surface one displays more cytokines and β-Defensin 2 in comparison to the glandular one. Numerous to abundant expression of ILs-4, -6, -7, -8, -10, -12 and β-Defensin 2 in nasal superficial and glandular epithelia proves probably these factors’ role into the common immune response of tissue and stimulation of immune cell differentiation.


2021 ◽  
Vol 22 (5) ◽  
pp. 2773
Author(s):  
Mika Yamanaka-Takaichi ◽  
Yukari Mizukami ◽  
Koji Sugawara ◽  
Kishiko Sunami ◽  
Yuichi Teranishi ◽  
...  

Psychological stress exacerbates mast cell (MC)-dependent inflammation, including nasal allergy, but the underlying mechanisms are not thoroughly understood. Because the key stress-mediating neurohormone, corticotropin-releasing hormone (CRH), induces human skin MC degranulation, we hypothesized that CRH may be a key player in stress-aggravated nasal allergy. In the current study, we probed this hypothesis in human nasal mucosa MCs (hM-MCs) in situ using nasal polyp organ culture and tested whether CRH is required for murine M-MC activation by perceived stress in vivo. CRH stimulation significantly increased the number of hM-MCs, stimulated both their degranulation and proliferation ex vivo, and increased stem cell factor (SCF) expression in human nasal mucosa epithelium. CRH also sensitized hM-MCs to further CRH stimulation and promoted a pro-inflammatory hM-MC phenotype. The CRH-induced increase in hM-MCs was mitigated by co-administration of CRH receptor type 1 (CRH-R1)-specific antagonist antalarmin, CRH-R1 small interfering RNA (siRNA), or SCF-neutralizing antibody. In vivo, restraint stress significantly increased the number and degranulation of murine M-MCs compared with sham-stressed mice. This effect was mitigated by intranasal antalarmin. Our data suggest that CRH is a major activator of hM-MC in nasal mucosa, in part via promoting SCF production, and that CRH-R1 antagonists such as antalarmin are promising candidate therapeutics for nasal mucosa neuroinflammation induced by perceived stress.


Author(s):  
Seung Min In ◽  
Do-Yang Park ◽  
Ki-Il Lee ◽  
Gayoung Gu ◽  
Hyun Jun Kim

2020 ◽  
Vol 26 (21-22) ◽  
pp. 1199-1208
Author(s):  
Pascal Ickrath ◽  
Katrin Ickrath ◽  
Maria Steinke ◽  
Agmal Scherzad ◽  
Norbert Kleinsasser ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erik Melin ◽  
Per Kristian Eide ◽  
Geir Ringstad

Abstract Extra-vascular molecular clearance routes from the brain and cerebrospinal fluid (CSF) remain insufficiently characterized in humans. Animal studies consistently suggest that the cribriform plate and nasal lymphatic vessels are crucial for molecular clearance from CSF. In this study, we aimed to examine human in vivo transport of a CSF tracer from CSF to nasal mucosa. We hypothesised a CSF tracer would enrich in nasal mucosa provided that nasal lymphatic drainage has a significant role in CSF molecular clearance. Consecutive magnetic resonance imaging during 48 h after intrathecal administration of a tracer (gadobutrol) was performed in 24 patients. Despite a strong enrichment of CSF tracer in CSF spaces nearby the cribriform plate, there was no significant enrichment of CSF tracer in nasal mucosa, as measured in superior, medial and inferior turbinates, or in the nasal septum. Therefore, this in vivo study questions the importance of CSF drainage to the human nasal mucosa and emphasizes the need of further human studies.


2020 ◽  
Vol 41 (4) ◽  
pp. 102561
Author(s):  
Hsing-Won Wang ◽  
Li-Hsiang Cheng ◽  
Fei-Peng Lee

Sign in / Sign up

Export Citation Format

Share Document