Plexus structure imaging with thin slab MR neurography: rotating frames, fly-throughs, and composite projections

2006 ◽  
Author(s):  
David T. Raphael ◽  
Diane McIntee ◽  
Jay S. Tsuruda ◽  
Patrick Colletti ◽  
Raymond Tatevossian ◽  
...  
2020 ◽  
Vol 117 (6) ◽  
pp. 602
Author(s):  
Heping Liu ◽  
Jianjun Zhang ◽  
Hongbiao Tao ◽  
Hui Zhang

In this article, based on the actual monitored temperature data from mold copper plate with a dense thermocouple layout and the measured magnetic flux density values in a CSP thin-slab mold, the local heat flux and thin-slab solidification features in the funnel-type mold with electromagnetic braking are analyzed. The differences of local heat flux, fluid flow and solidified shell growth features between two steel grades of Q235B with carbon content of 0.19%C and DC01 of 0.03%C under varying operation conditions are discussed. The results show the maximum transverse local heat flux is near the meniscus region of over 0.3 m away from the center of the wide face, which corresponds to the upper flow circulation and the large turbulent kinetic energy in a CSP funnel-type mold. The increased slab width and low casting speed can reduce the fluctuation of the transverse local heat flux near the meniscus. There is a decreased transverse local heat flux in the center of the wide face after the solidified shell is pulled through the transition zone from the funnel-curve to the parallel-cure zone. In order to achieve similar metallurgical effects, the braking strength should increase with the increase of casting speed and slab width. Using the strong EMBr field in a lower casting speed might reverse the desired effects. There exist some differences of solidified shell thinning features for different steel grades in the range of the funnel opening region under the measured operating conditions, which may affect the optimization of the casting process in a CSP caster.


Author(s):  
Peter Mann

This chapter discusses the importance of circular motion and rotations, whose applications to chemical systems are plentiful. Circular motion is the book’s first example of a special case of motion using the laws developed in previous chapters. The chapter begins with the basic definitions of circular motion; as uniform rotation around a principle axis is much easier to consider, it is the focus of this chapter and is used to develop some key ideas. The chapter discusses angular displacement, angular velocity, angular momentum, torque, rigid bodies, orbital and spin momenta, inertia tensors and non-inertial frames and explores fictitious forces as well as transformations in rotating frames.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Bing Fu ◽  
Li Xiang ◽  
Jia-Long Qiao ◽  
Hai-Jun Wang ◽  
Jing Liu ◽  
...  

Based on low-temperature high-permeability grain-oriented silicon steel designed with an initial nitrogen content of 0.0055% and produced by the thin slab casting and rolling process, the effect of total nitrogen content and nitriding temperature on primary recrystallization microstructure and texture were studied by optical microscope, scanning electron microscope, transmission electron microscope, and electron backscatter diffraction. The nitriding temperature affects the primary recrystallization behaviors significantly, while the total nitrogen content has a small effect. As the nitriding temperature is 750–850 °C, the average primary grain size and its inhomogeneity factor are about 26.58–26.67 μm and 0.568–0.572, respectively. Moreover, the texture factor is mostly between 0.15 and 0.40. Because of the relatively sufficient inhibition ability of inherent inhibitors in a decarburized sheet, the nitriding temperature (750–850 °C) affects the primary recrystallization microstructure and texture slightly. However, as the nitriding temperature rises to 900–950 °C, the average primary grain size and its inhomogeneity factor increase to 27.75–28.26 μm and 0.575–0.578, respectively. Furthermore, because of the great increase on the area fraction of {112} <110> grains, part of texture factor is increased sharply. Therefore, in order to obtain better primary grain size and homogeneity, better texture composition, and stability of the decarburized sheet, the optimal nitriding temperature is 750–850 °C.


2020 ◽  
Vol 84 (6) ◽  
pp. 3316-3324
Author(s):  
Ioannis Koktzoglou ◽  
Rong Huang ◽  
Archie L. Ong ◽  
Pascale J. Aouad ◽  
Matthew T. Walker ◽  
...  

2014 ◽  
Vol 45 (3) ◽  
pp. 1024-1037 ◽  
Author(s):  
A. Vakhrushev ◽  
M. Wu ◽  
A. Ludwig ◽  
Y. Tang ◽  
G. Hackl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document