The NGST long-wave hyperspectral imaging spectrometer: sensor hardware and data processing

2006 ◽  
Author(s):  
John Shepanski ◽  
Stephanie Sandor-Leahy
2009 ◽  
Author(s):  
Li-yin Yuan ◽  
Wei-ming Xu ◽  
Zhi-ping He ◽  
Ying Lin ◽  
Rong Shu ◽  
...  

Author(s):  
Luke Sollitt ◽  
John Shepanski ◽  
Karen Yokoyama ◽  
Erin Englert

2021 ◽  
Author(s):  
Robert Green ◽  
Michael Rast ◽  
Michael Schaepman ◽  
Andreas Hueni ◽  
Michael Eastwood

<p>In 2018 a joint ESA and NASA airborne campaign was orchestrated with the University of Zurich to advance cooperation and harmonization of algorithms and products from imaging spectrometer measurements.  This effort was intended to benefit the future candidate European Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) and NASA Surface Biology and Geology mission. For this campaign, the Airborne Visible/Infrared Imaging Spectrometer Next Generation was deployed from May to July 2018.  Twenty-four study sites were measured across Germany, Italy, and Switzerland.  All measurements were rapidly calibrated, atmospherically corrected, and made available to NASA and ESA investigators.  An expanded 2021 campaign is now planned with goals to: 1) further test and evaluate new state-of-the-art science algorithms: atmospheric correction, etc; 2)  grow international science collaboration in support of ESA CHIME and NASA SBG; 3) test/demonstrate calibration, validation, and uncertainty quantification approaches;  4) collect strategic cross-comparison under flights of space missions: DESIS, PRISMA, Sentinels, etc.  In this paper, we present an overview of the key results from the 2018 campaign and plans for the 2021 campaign.</p><p> </p>


2012 ◽  
Vol 32 (11) ◽  
pp. 1122005
Author(s):  
张晓龙 Zhang Xiaolong ◽  
刘英 Liu Ying ◽  
孙强 Sun Qiang ◽  
刘建卓 Liu Jianzhuo ◽  
王保华 Wang Baohua

2020 ◽  
Vol 642 ◽  
pp. A14 ◽  
Author(s):  
◽  
M. Anderson ◽  
T. Appourchaux ◽  
F. Auchère ◽  
R. Aznar Cuadrado ◽  
...  

Aims. The Spectral Imaging of the Coronal Environment (SPICE) instrument is a high-resolution imaging spectrometer operating at extreme ultraviolet wavelengths. In this paper, we present the concept, design, and pre-launch performance of this facility instrument on the ESA/NASA Solar Orbiter mission. Methods. The goal of this paper is to give prospective users a better understanding of the possible types of observations, the data acquisition, and the sources that contribute to the instrument’s signal. Results. The paper discusses the science objectives, with a focus on the SPICE-specific aspects, before presenting the instrument’s design, including optical, mechanical, thermal, and electronics aspects. This is followed by a characterisation and calibration of the instrument’s performance. The paper concludes with descriptions of the operations concept and data processing. Conclusions. The performance measurements of the various instrument parameters meet the requirements derived from the mission’s science objectives. The SPICE instrument is ready to perform measurements that will provide vital contributions to the scientific success of the Solar Orbiter mission.


Sign in / Sign up

Export Citation Format

Share Document