The influence of molecular weight on the microstructure and thin film transistor characteristics of pBTTT polymers.

Author(s):  
Rick Hamilton ◽  
Clare Bailey ◽  
Warren Duffy ◽  
Martin Heeney ◽  
Maxim Shkunov ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Robert C. Coffin ◽  
Christopher M. MacNeill ◽  
Eric D. Peterson ◽  
Jeremy W. Ward ◽  
Jack W. Owen ◽  
...  

Through manipulation of the solubilizing side chains, we were able to dramatically improve the molecular weight(Mw)of 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene (BDT)/2,1,3-benzothiadiazole (BT) copolymers. When dodecyl side chains (P1) are employed at the 4- and 8-positions of the BDT unit, we obtain a chloroform-soluble copolymer fraction withMwof 6.3 kg/mol. Surprisingly, by moving to the commonly employed 2-ethylhexyl branch (P2),Mwdecreases to 3.4 kg/mol. This is despite numerous reports that this side chain increases solubility andMw. By moving the ethyl branch in one position relative to the polymer backbone (1-ethylhexyl,P3),Mwis dramatically increased to 68.8 kg/mol. As a result of thisMwincrease, the shape of the absorption profile is dramatically altered, withλmax= 637 nm compared with 598 nm forP1and 579 nm forP2. The hole mobility as determined by thin film transistor (TFT) measurements is improved from~1×10−6 cm2/Vs forP1andP2to7×10−4 cm2/Vs forP3, while solar cell power conversion efficiency in increased to2.91%forP3relative to0.31%and0.19%forP1andP2, respectively.


2020 ◽  
Vol 59 (12) ◽  
pp. 126503
Author(s):  
Tsung-Kuei Kang ◽  
Che-Fu Hsu ◽  
Han-Wen Liu ◽  
Feng-Tso Chien ◽  
Cheng-Li Lin

2020 ◽  
Vol 35 (12) ◽  
pp. 1211-1221
Author(s):  
Hong-long NING ◽  
◽  
Yu-xi DENG ◽  
Jian-lang HUANG ◽  
Zi-long LUO ◽  
...  

2014 ◽  
Vol 35 (20) ◽  
pp. 1770-1775 ◽  
Author(s):  
Stefanie Schmid ◽  
Anne K. Kast ◽  
Rasmus R. Schröder ◽  
Uwe H. F. Bunz ◽  
Christian Melzer

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 200
Author(s):  
Do Won Kim ◽  
Hyeon Joong Kim ◽  
Changmin Lee ◽  
Kyoungdu Kim ◽  
Jin-Hyuk Bae ◽  
...  

Sol-gel processed SnO2 thin-film transistors (TFTs) were fabricated on SiO2/p+ Si substrates. The SnO2 active channel layer was deposited by the sol-gel spin coating method. Precursor concentration influenced the film thickness and surface roughness. As the concentration of the precursor was increased, the deposited films were thicker and smoother. The device performance was influenced by the thickness and roughness of the SnO2 active channel layer. Decreased precursor concentration resulted in a fabricated device with lower field-effect mobility, larger subthreshold swing (SS), and increased threshold voltage (Vth), originating from the lower free carrier concentration and increase in trap sites. The fabricated SnO2 TFTs, with an optimized 0.030 M precursor, had a field-effect mobility of 9.38 cm2/Vs, an SS of 1.99, an Ion/Ioff value of ~4.0 × 107, and showed enhancement mode operation and positive Vth, equal to 9.83 V.


Sign in / Sign up

Export Citation Format

Share Document