New adaptive branch and bound algorithm for hyperspectral waveband selection for chicken skin tumor detection

2006 ◽  
Author(s):  
Songyot Nakariyakul ◽  
David Casasent
Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 844
Author(s):  
Xingkui Li ◽  
Boliang Lin ◽  
Yinan Zhao

Each loop in a multi-loop rail network consists of two segments, both of which have roughly the same conditions and mileage and are approximately symmetrical. This paper is devoted to optimizing the paths of trains formed at the loading area in a multi-loop rail network. To attain this goal, three different situations are analyzed, and two models are proposed for networks with adequate and inadequate capabilities. Computational experiments are also carried out using the commercial software Lingo, with the branch and bound algorithm. The results show that the models can achieve the same solution with different solution times. To solve the problem of path selection for large-scale train flows, a genetic algorithm is also designed and proves to perform well in a set of computational experiments.


Author(s):  
Bishaljit Paul ◽  
Sushovan Goswami ◽  
Dipu Mistry ◽  
Chandan Kumar Chanda

Author(s):  
Jan-Lucas Gade ◽  
Carl-Johan Thore ◽  
Jonas Stålhand

AbstractIn this study, we consider identification of parameters in a non-linear continuum-mechanical model of arteries by fitting the models response to clinical data. The fitting of the model is formulated as a constrained non-linear, non-convex least-squares minimization problem. The model parameters are directly related to the underlying physiology of arteries, and correctly identified they can be of great clinical value. The non-convexity of the minimization problem implies that incorrect parameter values, corresponding to local minima or stationary points may be found, however. Therefore, we investigate the feasibility of using a branch-and-bound algorithm to identify the parameters to global optimality. The algorithm is tested on three clinical data sets, in each case using four increasingly larger regions around a candidate global solution in the parameter space. In all cases, the candidate global solution is found already in the initialization phase when solving the original non-convex minimization problem from multiple starting points, and the remaining time is spent on increasing the lower bound on the optimal value. Although the branch-and-bound algorithm is parallelized, the overall procedure is in general very time-consuming.


Author(s):  
Muhammad Irfan Sharif ◽  
Jian Ping Li ◽  
Javeria Amin ◽  
Abida Sharif

AbstractBrain tumor is a group of anomalous cells. The brain is enclosed in a more rigid skull. The abnormal cell grows and initiates a tumor. Detection of tumor is a complicated task due to irregular tumor shape. The proposed technique contains four phases, which are lesion enhancement, feature extraction and selection for classification, localization, and segmentation. The magnetic resonance imaging (MRI) images are noisy due to certain factors, such as image acquisition, and fluctuation in magnetic field coil. Therefore, a homomorphic wavelet filer is used for noise reduction. Later, extracted features from inceptionv3 pre-trained model and informative features are selected using a non-dominated sorted genetic algorithm (NSGA). The optimized features are forwarded for classification after which tumor slices are passed to YOLOv2-inceptionv3 model designed for the localization of tumor region such that features are extracted from depth-concatenation (mixed-4) layer of inceptionv3 model and supplied to YOLOv2. The localized images are passed toMcCulloch'sKapur entropy method to segment actual tumor region. Finally, the proposed technique is validated on three benchmark databases BRATS 2018, BRATS 2019, and BRATS 2020 for tumor detection. The proposed method achieved greater than 0.90 prediction scores in localization, segmentation and classification of brain lesions. Moreover, classification and segmentation outcomes are superior as compared to existing methods.


Sign in / Sign up

Export Citation Format

Share Document