Performance improvement of direct torque control system for induction motor in low-speed operation using wavelet network

2006 ◽  
Author(s):  
Hua Liu ◽  
Wei Liao ◽  
Yuguo Wang ◽  
Songhua Shen
Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2154 ◽  
Author(s):  
Dazhi Wang ◽  
Tianqing Yuan ◽  
Xingyu Wang ◽  
Xinghua Wang ◽  
Yongliang Ni

In order to improve the performance of the servo control system driven by a permanent magnet synchronous motor (PMSM) under novel direct torque control (NDTC), which, utilizing composite active vectors, fixed sector division criterion, is proposed in this paper. The precondition of the accurate compensations of torque and flux errors is that the sector where the stator flux linkage is located can be determined accurately. Consequently, the adaptive sector division criterion is adopted in NDTC. However, the computation burden is inevitably increased with the using of the adaptive part. On the other hand, the main errors can be compensated through SV-DTC (DTC-utilizing single active vector), while another active vector applied in NDTC can only supply the auxiliary error compensation. The relationships of the two active vectors’ characteristics in NDTC are analyzed in this paper based on the active factor. Furthermore, the fixed sector division criterion is proposed for NDTC (FS-NDTC), which can classify the complexity of the control system. Additionally, the switching table for the selections of the two active vectors is designed. The effectiveness of the proposed FS-NDTC is verified through the experimental results on a 100-W PMSM drive system.


2011 ◽  
Vol 328-330 ◽  
pp. 2172-2180 ◽  
Author(s):  
Zhi Long Xing ◽  
Yang Liu ◽  
Yun Feng Liu

Aiming to solve the energy saving problem in modern electric vehicle, we propose a motor-generator integration control system based on the induction motor and the fuzzy control theory in this paper. A motor-generator hardware platform is built up using the four quadrant characteristic of AC induction motor. The AC induction motor works both as driving motor of the electric vehicle and as well as the energy recovery generator. Specifically, the fuzzy direct torque control strategy is adopted in the motor state, and fuzzy instantaneous torque control strategy in power generation state. A simulation is carried out to analyze the practicality of the proposed control method, the simulation results show that the fuzzy torque control technology is well performed. Finally, a simulative energy recovery experimental platform is built up to test the proposed integration control system, and results shown that the efficiency of energy recovery could be up to 97.3%.


Author(s):  
Alfeu J. Sguarezi Filho ◽  
E. Ruppert Filho

This paper proposes a design and tuning method for a complex gain controller, based on the three-phase induction motor mathematical model complex transfer function to be used in the direct torque control at low speed which is a problem so far. The design and tuning of the complex gain is done by using the closed loop system frequency-response function. Experimental results are presented to validate the controller and operation at low speed is also explored.


Sign in / Sign up

Export Citation Format

Share Document