High sensitivity detection of bacteria by surface plasmon resonance enhanced common path interferometry

2007 ◽  
Author(s):  
Charles Greef ◽  
Viatcheslav Petropavlovskikh ◽  
Oyvind Nilsen ◽  
Bilge Hacioglu ◽  
Boris Khattatov ◽  
...  
Author(s):  
Charles Greef ◽  
Viatcheslav Petropavlovskikh ◽  
Oyvind Nilsen ◽  
Bilge Hacioglu ◽  
Boris Khattatov ◽  
...  

PIERS Online ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 746-750 ◽  
Author(s):  
Bing-Hung Chen ◽  
Yih-Chau Wang ◽  
Jia-Hng Lin

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1325 ◽  
Author(s):  
Ru-Jing Sun ◽  
Hung Ji Huang ◽  
Chien-Nan Hsiao ◽  
Yu-Wei Lin ◽  
Bo-Huei Liao ◽  
...  

A TiN-based substrate with high reusability presented high-sensitivity refractive index measurements in a home-built surface plasmon resonance (SPR) heterodyne phase interrogation system. TiN layers with and without additional inclined-deposited TiN (i-TiN) layers on glass substrates reached high bulk charge carrier densities of 1.28 × 1022 and 1.91 × 1022 cm−3, respectively. The additional 1.4 nm i-TiN layer of the nanorod array presented a detection limit of 6.1 × 10−7 RIU and was higher than that of the 46 nm TiN layer at 1.2 × 10−6 RIU when measuring the refractive index of a glucose solution. Furthermore, the long-term durability of the TiN-based substrate demonstrated by multiple processing experiments presented a high potential for various practical sensing applications.


Sign in / Sign up

Export Citation Format

Share Document