A modified algorithm for continuous wave near infrared spectroscopy applied to in-vivo animal experiments and on human skin

Author(s):  
John H. G. M. Klaessens ◽  
Jeroen C. W. Hopman ◽  
K. Djien Liem ◽  
Rowland de Roode ◽  
Rudolf M. Verdaasdonk ◽  
...  
2011 ◽  
Vol 138-139 ◽  
pp. 553-559
Author(s):  
Ting Li ◽  
Zhi Li Zhang ◽  
Yi Zheng

Although functional near-infrared spectroscopy (fNIRS) has been developing as a useful tool for monitoring functional brain activity since the early 1990s, the quantification of hemoglobin concentration changes is still controversial and there are few detailed reports especially for continuous-wave (CW) instruments. By means of a two-layer model experiment mimicking hemodynamic changes in brain and mathematical analysis based on the modified Beer-Lambert law, we established an algorithm for a CW functional near-infrared spectroscopy (CW-fNIRS). The accuracy of this algorithm was validated both in comparison with direct measurements on brain tissue model and in vivo measurement upon human valsalva maneuver. This described method can also be utilized for other CW-fNIRS instruments to establish measuring algorithm.


2019 ◽  
Vol 9 (11) ◽  
pp. 2366 ◽  
Author(s):  
Laura Di Sieno ◽  
Alberto Dalla Mora ◽  
Alessandro Torricelli ◽  
Lorenzo Spinelli ◽  
Rebecca Re ◽  
...  

In this paper, a time-domain fast gated near-infrared spectroscopy system is presented. The system is composed of a fiber-based laser providing two pulsed sources and two fast gated detectors. The system is characterized on phantoms and was tested in vivo, showing how the gating approach can improve the contrast and contrast-to-noise-ratio for detection of absorption perturbation inside a diffusive medium, regardless of source-detector separation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Noman Naseer ◽  
Nauman Khalid Qureshi ◽  
Farzan Majeed Noori ◽  
Keum-Shik Hong

We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest) using functional near-infrared spectroscopy (fNIRS) signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),k-nearest neighbour (kNN), the Naïve Bayes approach, support vector machine (SVM), and artificial neural networks (ANN), were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that thepvalues were statistically significant relative to all of the other classifiers (p< 0.005) using HbO signals.


Sign in / Sign up

Export Citation Format

Share Document