A one-dimensional rate-dependent constitutive model for thermomechanical behavior of superelastic shape memory alloys

2010 ◽  
Author(s):  
Hui Qian ◽  
Wenjie Ren ◽  
Huai Chen ◽  
Haichang Gu ◽  
Sihua Zhang
2019 ◽  
Vol 31 (1) ◽  
pp. 100-116 ◽  
Author(s):  
Bingfei Liu ◽  
Qingfei Wang ◽  
Kai Yin ◽  
Liwen Wang

A theoretical model for the crack monitoring of the shape memory alloy intelligent concrete is presented in this work. The mechanical properties of shape memory alloy materials are first given by the experimental test. The one-dimensional constitutive model of the shape memory alloys is reviewed by degenerating from a three-dimensional model, and the behaviors of the shape memory alloys under different working conditions are then discussed. By combining the electrical resistivity model and the one-dimensional shape memory alloy constitutive model, the crack monitoring model of the shape memory alloy intelligent concrete is given, and the relationships between the crack width of the concrete and the electrical resistance variation of the shape memory alloy materials for different crack monitoring processes of shape memory alloy intelligent concrete are finally presented. The numerical results of the present model are compared with the published experimental data to verify the correctness of the model.


2008 ◽  
Vol 56 ◽  
pp. 84-91
Author(s):  
Tadashige Ikeda

A simple yet accurate macroscopic constitutive model of shape memory alloys has been developed. The features of this model are (1) energy-based phase transformation criterion, (2) one-dimensional phase transformation rule based on a micromechanical viewpoint, (3) dissipated energy with a form of a sum of two exponential functions, (4) duplication of the strain rate effect, and (5) adaptability to multi-phase transformation. This model is further improved to be able to express stress-strain relationships such that the reverse transformation starts at a higher stress than the martensitic transformation starts. Here, the ideal reversible transformation temperature is empirically described by a function of the martensite volume fraction. In this paper, an outline of our model is given, where the improvement is introduced. Then, it is shown that the model can quantitatively duplicate the major and minor hysteresis loops, strain rate effect, and asymmetry in tension and compression on the stress-strain relationship. And that it can also duplicate the stress-strain relationships having the reverse transformation start stress higher than the forward one.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Maria I. Ntina ◽  
Dimitrios S. Sophianopoulos

In this work, a new constitutive model of the behavior of shape-memory alloys is presented, based on earlier models, showing a very good agreement with the existing experimental results. A simple approximate application concerning the use of these alloys modelled as dissipation devices in a special truss-moment frame is demonstrated. The results obtained are considered sufficiently encouraging as a motivation for the ongoing work.


2019 ◽  
Vol 145 (3) ◽  
pp. 04019007
Author(s):  
Xiangjun Jiang ◽  
Jingli Du ◽  
Yesen Fan ◽  
Jin Huang ◽  
Fengqun Pan

2009 ◽  
Vol 410-411 ◽  
pp. 429-437 ◽  
Author(s):  
Wei Wang ◽  
Shi Yan ◽  
Gang Bing Song ◽  
Li Jiao

An improved two-dimensional constitutive model for shape memory alloys (SMAs), which can describe both the shape memory effect (SME) and super elasticity effect (SE) of the SMAs, is developed in the paper based on the previous work of Boyd and Lagoudas, who used the thermodynamics theories of free energy and dissipation energy to derive the constitutive law of the SMAs. The improved model, which will combine the ideas of Brinsion’s one-dimensional constitutive law and the concepts of Boyd and Lagoudas’ two-dimensional one, has a simple but accurate expression. Two examples are used to numerically validate the efficiency of the improved model and the results of the simulations show that the developed constitutive model can qualitatively describe the thermo-mechanical behaviors of two-dimensional SMAs.


Author(s):  
Olaniyi A. Balogun ◽  
Changki Mo ◽  
A. K. Mazher ◽  
John C. Brigham

This paper presents three-dimensional numerical simulation of thermomechanical constitutive model for shape memory polymers. Shape memory polymers (SMPs) are a class of smart materials with high potential for application to automotive, aerostructures, and medical devices, which can benefit from its intrinsic shape changing properties. In particular, looking at its application to aerospace substructure such as morphing wings, thermomechanical behavior of the SMPs needs to be well established and predicted. In order to predict the thermomechanical behavior of SMPs structures, a one-dimensional rheological thermomechanical constitutive model was adopted and a numerical simulation of this model was developed using a commercial finite element analysis package ABAQUS. The particular one-dimensional model was selected due to its potential to represent the key material behaviors of SMP with a relatively low number of required material constants, which is practical for engineering industrial applications. The model was expanded to a three-dimensional isotropic model and then incorporated into the finite element method by means of an ABAQUS user-defined subroutine (UMAT). The methods of three-dimensional expansion and numerical implementation are presented in this work. A time evolution of the analysis was conducted by making use of the backward difference method, which was applied to all quantities within the model including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermomechanical properties of the material, which include shape fixity, shape recovery, and recovery stress. Finally, a preliminary set of predictions for an unmanned aerial vehicle (UAV) morphing wing skin are also presented.


Sign in / Sign up

Export Citation Format

Share Document