scholarly journals A New Rate-Dependent Constitutive Model of Superelastic Shape Memory Alloys and Its Simple Application in a Special Truss Moment Frame Simulation

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Maria I. Ntina ◽  
Dimitrios S. Sophianopoulos

In this work, a new constitutive model of the behavior of shape-memory alloys is presented, based on earlier models, showing a very good agreement with the existing experimental results. A simple approximate application concerning the use of these alloys modelled as dissipation devices in a special truss-moment frame is demonstrated. The results obtained are considered sufficiently encouraging as a motivation for the ongoing work.

2010 ◽  
Vol 29-32 ◽  
pp. 1855-1861
Author(s):  
Bing Fei Liu ◽  
Guan Suo Dui ◽  
Yu Ping Zhu

A micromechanical constitutive model for responding the macroscopic behavior of porous shape memory alloys (SMA) has been proposed in this work. According to the micromechanical method, the stiffness tensor of the porous SMA is obtained. The critical stresses are calculated by elastic mechanics. Based on the general concept of secant moduli method, the effective secant moduli of the porous SMA is given in terms of the secant moduli of dense SMA and the volume fraction of pores. The model takes account of the tensile-compressive asymmetry of SMA materials and the effect of the hydrostatic stress. Only the material parameters of dense SMA are needed for numerical calculation, and can degenerate to dense material. Examples for the uniaxial response of porous SMA materials at constant temperature are then used to illustrate one possible application of the constitutive model. The numerical results have been compared with the experiment data for porous SMA, which show that the modeling results are in good agreement with the experiments.


Author(s):  
Francis R. Phillips ◽  
Daniel Martin ◽  
Dimitris C. Lagoudas ◽  
Robert W. Wheeler

Shape memory alloys (SMAs) are unique materials capable of undergoing a thermo-mechanically induced, reversible, crystallographic phase transformation. As SMAs are utilized across a variety of applications, it is necessary to understand the internal changes that occur throughout the lifetime of SMA components. One of the key limitations to the lifetime of a SMA component is the response of SMAs to fatigue. SMAs are subject to two kinds of fatigue, namely structural fatigue due to cyclic mechanical loading which is similar to high cycle fatigue, and functional fatigue due to cyclic phase transformation which typical is limited to the low cycle fatigue regime. In cases where functional fatigue is due to thermally induced phase transformation in contrast to being mechanically induced, this form of fatigue can be further defined as actuation fatigue. Utilizing X-ray computed microtomography, it is shown that during actuation fatigue, internal damage such as cracks or voids, evolves in a non-linear manner. A function is generated to capture this non-linear internal damage evolution and introduced into a SMA constitutive model. Finally, it is shown how the modified SMA constitutive model responds and the ability of the model to predict actuation fatigue lifetime is demonstrated.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document