Modeling and analysis of a micromachined piezoelectric energy harvester stimulated by ambient random vibrations

2011 ◽  
Author(s):  
Ali B. Alamin Dow ◽  
Hasan A. Al-Rubaye ◽  
David Koo ◽  
Michael Schneider ◽  
Achim Bittner ◽  
...  
Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 667 ◽  
Author(s):  
Jinda Jia ◽  
Xiaobiao Shan ◽  
Deepesh Upadrashta ◽  
Tao Xie ◽  
Yaowen Yang ◽  
...  

This paper presents an upright piezoelectric energy harvester (UPEH) with cylinder extension along its longitudinal direction. The UPEH can generate energy from low-speed wind by bending deformation produced by vortex-induced vibrations (VIVs). The UPEH has the advantages of less working space and ease of setting up an array over conventional vortex-induced vibration harvesters. The nonlinear distributed modeling method is established based on Euler–Bernoulli beam theory and aerodynamic vortex-induced force of the cylinder is obtained by the van der Pol wake oscillator theory. The fluid–solid–electricity governing coupled equations are derived using Lagrange’s equation and solved through Galerkin discretization. The effect of cylinder gravity on the dynamic characteristics of the UPEH is also considered using the energy method. The influences of substrate dimension, piezoelectric dimension, the mass of cylinder extension, and electrical load resistance on the output performance of harvester are studied using the theoretical model. Experiments were carried out and the results were in good agreement with the numerical results. The results showed that a UPEH configuration achieves the maximum power of 635.04 μW at optimum resistance of 250 kΩ when tested at a wind speed of 4.20 m/s. The theoretical results show that the UPEH can get better energy harvesting output performance with a lighter tip mass of cylinder, and thicker and shorter substrate in its synchronization working region. This work will provide the theoretical guidance for studying the array of multiple upright energy harvesters.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750128 ◽  
Author(s):  
Babak Montazer ◽  
Utpal Sarma

Modeling and analysis of a MEMS piezoelectric (PZT-Lead Zirconate Titanate) unimorph cantilever with different substrates are presented in this paper. Stainless steel and Silicon [Formula: see text] are considered as substrate. The design is intended for energy harvesting from ambient vibrations. The cantilever model is based on Euler–Bernoulli beam theory. The generated voltage and power, the current density, resonance frequencies and tip displacement for different geometry (single layer and array structure) have been analyzed using finite element method. Variation of output power and resonant frequency for array structure with array elements connected in parallel have been studied. Strain distribution is studied for external vibrations with different frequencies. The geometry of the piezoelectric layer as well as the substrate has been optimized for maximum power output. The variation of generated power output with frequency and load has also been presented. Finally, several models are introduced and compared with traditional array MEMS energy harvester.


Author(s):  
Sihong Zhao ◽  
Alper Erturk

Vibration-based energy harvesting has been heavily researched over the last decade with a primary focus on resonant excitation. However, ambient vibrational energy often has broader frequency content than a single harmonic, and in many cases it is entirely stochastic. As compared to the literature of deterministic energy harvesting, very few authors presented modeling approaches for energy harvesting from broadband random vibrations. These efforts have combined the input statistical information with the single-degree-of-freedom (SDOF) dynamics of the energy harvester to express the statistical electromechanical response characteristics. In most cases, the motion input (base acceleration) is assumed to be ideal white noise. White noise has a flat power spectral density (PSD) that might in fact excite higher vibration modes of an electroelastic energy harvester. In particular, piezoelectric energy harvesters constitute such continuous electroelastic systems with more than one vibration mode. This paper presents modeling and simulations of piezoelectric energy harvesting from broadband random vibrations based on distributed-parameter electroelastic solution. For white noise–type base acceleration of a given PSD level, first the general solution of the distributed-parameter problem is given. Closed-form representations are extracted for the single-mode case and these are analogous to the SDOF equations reported in the literature of energy harvesting. It is reported that the single-mode predictions might result in significant mismatch as compared to multi-mode predictions. Using the electroelastic solution, soft and hard piezoelectric power generators are compared under broadband random excitation. Shunt damping effect of power generation on the stochastic vibration response under broadband random excitation is also reported.


2019 ◽  
Vol 43 (10) ◽  
pp. 5199-5212 ◽  
Author(s):  
Roja Esmaeeli ◽  
Haniph Aliniagerdroudbari ◽  
Seyed Reza Hashemi ◽  
Muapper Alhadri ◽  
Waleed Zakri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document