scholarly journals Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 667 ◽  
Author(s):  
Jinda Jia ◽  
Xiaobiao Shan ◽  
Deepesh Upadrashta ◽  
Tao Xie ◽  
Yaowen Yang ◽  
...  

This paper presents an upright piezoelectric energy harvester (UPEH) with cylinder extension along its longitudinal direction. The UPEH can generate energy from low-speed wind by bending deformation produced by vortex-induced vibrations (VIVs). The UPEH has the advantages of less working space and ease of setting up an array over conventional vortex-induced vibration harvesters. The nonlinear distributed modeling method is established based on Euler–Bernoulli beam theory and aerodynamic vortex-induced force of the cylinder is obtained by the van der Pol wake oscillator theory. The fluid–solid–electricity governing coupled equations are derived using Lagrange’s equation and solved through Galerkin discretization. The effect of cylinder gravity on the dynamic characteristics of the UPEH is also considered using the energy method. The influences of substrate dimension, piezoelectric dimension, the mass of cylinder extension, and electrical load resistance on the output performance of harvester are studied using the theoretical model. Experiments were carried out and the results were in good agreement with the numerical results. The results showed that a UPEH configuration achieves the maximum power of 635.04 μW at optimum resistance of 250 kΩ when tested at a wind speed of 4.20 m/s. The theoretical results show that the UPEH can get better energy harvesting output performance with a lighter tip mass of cylinder, and thicker and shorter substrate in its synchronization working region. This work will provide the theoretical guidance for studying the array of multiple upright energy harvesters.

2010 ◽  
Vol 133 (1) ◽  
Author(s):  
F. Khameneifar ◽  
M. Moallem ◽  
S. Arzanpour

This paper presents modeling and analysis of a piezoelectric mounted rotary flexible beam that can be used as an energy scavenger for rotary motion applications. The energy harvester system consists of a piezoelectric bimorph cantilever beam with a tip mass mounted on a rotating hub. Assuming Euler–Bernoulli beam equations and considering the effect of a piezoelectric transducer, equations of motion are derived using the Lagrangian approach followed by relationships describing the harvested power. The equations provide a quantitative description of how the hub acceleration and gravity due to the tip mass contribute power to the energy harvester. In particular, expressions describing optimum load resistance and the maximum power that can be harvested using the proposed system are derived. Numerical simulations are performed to show the performance of the harvester by obtaining tip velocities and electrical output voltages for a range of electrical load resistances and rotational speeds. It is shown that by proper sizing and parameter selection, the proposed system can supply enough energy for operating wireless sensors in rotating mechanisms such as tires and turbines.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3101
Author(s):  
Xiaobiao Shan ◽  
Haigang Tian ◽  
Han Cao ◽  
Tao Xie

This paper proposes a novel and efficient energy harvester (EH) system, for capturing simultaneously flutter and vortex-induced vibration. There exists a coupling effect between flexible spring energy harvester (FSEH) and cantilever beam energy harvester (CBEH) in aerodynamic response and output characteristic. Many prototypes of the harvester were manufactured to explore the coupling effect in a wind tunnel. The experimental results demonstrate that FSEH is mainly subjected to flutter-induced vibration and CBEH undergoes vortex-induced vibration. Disturbance of FSEH first takes place, a limited oscillation cycle then occurs, and chaos ultimately happens as airflow velocity increase. Root mean square voltages are more than 11 V for FSEH at beyond 10.52 m/s, which shows the better output performance over the existing harvesters. Vibration response and output voltage of various harvesters are mutually enhanced with each other. An enhancing ratio for FSEH-130-25 is up to 69.6% over FSEH-130-0, while the enhancing ratio for CBEH-130-30 is 198.3% compared to CBEH-0-30. Field application testing manifests that discharging time to power the pedometer is almost twice as long as the charging one for FSEH-130-25 at 14.48 m/s. The current research offers a suggestive guidance for promoting future practical application in micro airfoil aircrafts.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
H. Salmani ◽  
G. H. Rahimi ◽  
S. A. Hosseini Kordkheili

It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled equations into modal coordinates. The steady states harmonic solution results are verified both numerically and experimentally. Results show that there exist values for tapering parameter and electric resistance in a way that the output power per mass of the energy harvester will be maximized. Moreover it is concluded that the electric resistance must be higher than a specified value for gaining more power by tapering the beam.


2015 ◽  
Vol 23 (15) ◽  
pp. 2538-2553 ◽  
Author(s):  
Ahmed Jemai ◽  
Fehmi Najar ◽  
Moez Chafra

The use of a multilayer piezoelectric cantilever beam for vibration-based energy harvesting applications has been investigated as an effective technique to increase the harvested electrical power. It has been shown that the multilayered energy harvester performance is very sensitive to the number of layers and their electrical connection due to impedance variations. The objective of this work is to suggest a comprehensive mathematical model of multilayered unimorph piezoelectric energy harvester allowing analytical solution for the harvested voltage and electrical power. The model is used to deeply investigate the influence of different parameters on the harvested power. A distributed-parameter model of the harvester using the Euler–Bernoulli beam theory and Hamilton's principle is derived. Gauss's law is used to derive the electrical equations for parallel and series connections. A closed-form solution is proposed based on the Galerkin procedure and the obtained results are validated with a finite element 3D model. A parametric study is performed to ascertain the influence of the load resistance, the thickness ratio, the number of piezoelectric layers on the tip displacement and the electrical harvested power. It is shown that this model can be easily used to adjust the geometrical and electrical parameters of the energy harvester in order to improve the system's performances. In addition, it is proven that if one of the system's parameter is not correctly tuned, the harvested power can decrease by several orders of magnitude.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750128 ◽  
Author(s):  
Babak Montazer ◽  
Utpal Sarma

Modeling and analysis of a MEMS piezoelectric (PZT-Lead Zirconate Titanate) unimorph cantilever with different substrates are presented in this paper. Stainless steel and Silicon [Formula: see text] are considered as substrate. The design is intended for energy harvesting from ambient vibrations. The cantilever model is based on Euler–Bernoulli beam theory. The generated voltage and power, the current density, resonance frequencies and tip displacement for different geometry (single layer and array structure) have been analyzed using finite element method. Variation of output power and resonant frequency for array structure with array elements connected in parallel have been studied. Strain distribution is studied for external vibrations with different frequencies. The geometry of the piezoelectric layer as well as the substrate has been optimized for maximum power output. The variation of generated power output with frequency and load has also been presented. Finally, several models are introduced and compared with traditional array MEMS energy harvester.


Author(s):  
Hichem Abdelmoula ◽  
Nathan Sharpes ◽  
Hyeon Lee ◽  
Abdessattar Abdelkefi ◽  
Shashank Priya

We design and experimentally validate a zigzag piezoelectric energy harvester that can generate energy at low frequencies and which can be used to operate low-power consumption electronic devices. The harvester is composed of metal and piezoelectric layers and is used to harvest energy through direct excitations. A computational model is developed using Abaqus to determine the exact mode shapes and coupled frequencies of the considered energy harvester in order to design a broadband torsion-bending mechanical system. Analysis is then performed to determine the optimal load resistance. The computational results are compared and validated with the experimental measurements. More detailed analysis is then carried out to investigate the effects of the masses on the bending and torsion natural frequencies of the harvester and generated power levels. The results show that due to the coupling between the bending and torsion modes of the zigzag structure, highest levels of the harvested power are obtained when the excitation frequency matches the coupled frequency of torsion type for three different values of the tip mass.


Author(s):  
Andreza T. Mineto ◽  
Paulo S. Varoto

In this paper we present an analytical investigation of a nonlinear energy harvester device. The device is composed of a cantilever beam partially covered by piezoelectric ceramics in a bimorph configuration with a magnetic lumped mass attached to the beam’s free end. The model accounts for the nonlinearity coming from the piezoelectric constitutive equations in addition to the nonlinear effect arising from the magnetic field generated by the magnetic properties of the tip mass and additional magnetic sources in the vicinity of the beam. The electromechanical coupled equations are solved numerically through the initial value problems for ordinary differential equations. The electrical power output is calculated by varying the amplitude of the base acceleration, the distance between the magnets and the load resistor. The stability of the system is also investigated. From the numerical results it is found that the influence of the parameters investigated in the frequency range of operation of the device and the nonlinear effects present on the device energy harvester extend the useful frequency range of these.


Author(s):  
Mahdi Derayatifar ◽  
Ramin Sedaghati ◽  
Sujatha Chandramohan ◽  
Muthukumaran Packirisamy ◽  
Rama Bhat

The aim of this embodiment is to present an analytical analysis of a functionally graded piezoelectric energy harvester consisting of a flexible functionally graded piezoelectric layers carrying magnetic mass at the free end. The magnetic tip mass is in interaction with a permanent magnet which is located at a distance from the top of the tip mass. The oscillation of the harvester happens via excitation of the base. Using Rayleigh’s beam theory and Hamilton’s principle and considering geometric nonlinearity, the coupled electromechanical governing equations have been developed. The nonlinear frequency response of the piezoelectric energy harvester beam has also been studied under base excitation. A parametric study has been carried out to investigate the effect of grading index and magnetic force on responses of both free vibration and induced excitation cases. The results were compared with those obtained using three-dimensional finite element model developed in COMSOL Multiphysics 5.5 commercial software and good agreement has been observed. The results from both the analytical method and simulation confirm that tuning the design parameters of grading index and magnetic gap to the optimal value results in a considerable change in the performance of the energy harvester.


Author(s):  
Wei-Jiun Su ◽  
Jean W. Zu

Piezoelectric material has been widely utilized in vibration-based energy harvesters (VEH). The most common configuration of piezoelectric energy harvester is a cantilevered beam with unimorph or bimorph piezoelectric layers. In this paper, a new configuration of PEH is proposed. Two beams are assembled as V shape with tip masses attached. The first beam is a cantilevered beam with tip mass while the second beam is attached to the end of the first beam with a certain angle. Piezoelectric layers are attached to both beams in unimorph configuration for power generation. The analytical solution is derived based on Euler-Bernoulli beam theory. In this analysis, the angle varies from 0 to 135 degree to see the influence of angle on voltage and power frequency response. The V-shaped VEH is proven to have the second resonant frequency relatively close to the first resonant frequency when compared with conventional cantilevered VEH. Furthermore, the angle between the two beams will influence the ratio of the second to the first resonant frequency. By choosing a suitable angle, the V-shaped structure can effectively broaden the bandwidth.


Sign in / Sign up

Export Citation Format

Share Document