The impact of active layer design on quantum efficiency of InGaN light emitting diodes

2012 ◽  
Author(s):  
F. Zhang ◽  
X. Li ◽  
S. Okur ◽  
V. Avrutin ◽  
Ü. Özgür ◽  
...  
Author(s):  
Wenjing Feng ◽  
Kebin Lin ◽  
Wenqiang Li ◽  
Xiangtian Xiao ◽  
Jianxun Lu ◽  
...  

Metal halide perovskite light-emitting diodes (PeLEDs) are promising in lighting and display application, and the corresponding device performance is highly dependent on the film quality of the active layer. However,...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuwei Guo ◽  
Sofia Apergi ◽  
Nan Li ◽  
Mengyu Chen ◽  
Chunyang Yin ◽  
...  

AbstractPerovskite light emitting diodes suffer from poor operational stability, exhibiting a rapid decay of external quantum efficiency within minutes to hours after turn-on. To address this issue, we explore surface treatment of perovskite films with phenylalkylammonium iodide molecules of varying alkyl chain lengths. Combining experimental characterization and theoretical modelling, we show that these molecules stabilize the perovskite through suppression of iodide ion migration. The stabilization effect is enhanced with increasing chain length due to the stronger binding of the molecules with the perovskite surface, as well as the increased steric hindrance to reconfiguration for accommodating ion migration. The passivation also reduces the surface defects, resulting in a high radiance and delayed roll-off of external quantum efficiency. Using the optimized passivation molecule, phenylpropylammonium iodide, we achieve devices with an efficiency of 17.5%, a radiance of 1282.8 W sr−1 m−2 and a record T50 half-lifetime of 130 h under 100 mA cm−2.


1992 ◽  
Vol 283 ◽  
Author(s):  
Peter Steiner ◽  
Frank Kozlowski ◽  
Hermann Sandmaier ◽  
Walter Lang

ABSTRACTFirst results on light emitting diodes in porous silicon were reported in 1991. They showed a quantum efficiency of 10-7 to 10-5 and an orange spectrum. Over the last year some progress was achieved:- By applying UV-light during the etching blue and green light emitting diodes in porous silicon are fabricated.- When a p/n junction is realized within the porous region, a quantum efficiency of 10-4 is obtained.


2008 ◽  
Vol 20 (4) ◽  
pp. 696-702 ◽  
Author(s):  
H. B. Wu ◽  
J. H. Zou ◽  
F. Liu ◽  
L. Wang ◽  
A. Mikhailovsky ◽  
...  

2013 ◽  
Vol 17 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Santosh M. Harish ◽  
Shuba V. Raghavan ◽  
Milind Kandlikar ◽  
Gireesh Shrimali

Sign in / Sign up

Export Citation Format

Share Document