Enabling unmanned capabilities in the tactical wheeled vehicle fleet of the future

2012 ◽  
Author(s):  
Noah Zych
1980 ◽  
Author(s):  
ARMY TRANSPORTATION SCHOOL FORT EUSTIS VA

2019 ◽  
Vol 14 (2) ◽  
pp. 021001 ◽  
Author(s):  
David R Keith ◽  
Samantha Houston ◽  
Sergey Naumov

2016 ◽  
Vol 51 (2) ◽  
pp. 1007-1016 ◽  
Author(s):  
Wenwei Ke ◽  
Shaojun Zhang ◽  
Ye Wu ◽  
Bin Zhao ◽  
Shuxiao Wang ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 5032 ◽  
Author(s):  
Antti Lajunen ◽  
Klaus Kivekäs ◽  
Jari Vepsäläinen ◽  
Kari Tammi

Different estimations have been presented for the amount of electric vehicles in the future. These estimations rarely take into account any realistic dynamics of the vehicle fleet. The objective of this paper is to analyze recently presented future scenarios about the passenger vehicle fleet estimations and create a foundation for the development of a fleet estimation model for passenger cars dedicated to the Finnish vehicle market conditions. The specific conditions of the Finnish light-duty vehicle fleet are taken into account as boundary conditions for the model development. The fleet model can be used for the estimation of emissions-optimal future vehicle fleets and the evaluation of the carbon dioxide emissions of transportation. The emission analysis was done for four different scenarios of the passenger vehicle fleet development in Finland. The results show that the high average age of the fleet and high number of older gasoline vehicles will slow down the reduction of carbon dioxide emissions during the next five to ten years even with a high adoption rate of electric vehicles. It can be concluded that lowering the average age, increasing biofuel mixing ratios, and increasing the amount of rechargeable electric vehicles are the most effective measures to reduce carbon dioxide emissions of the Finnish passenger vehicle fleet in the future.


2021 ◽  
Vol 32 (3) ◽  
pp. 15-24
Author(s):  
Laurie Budd ◽  
Stuart Newstead

Formulating priorities for future road safety strategies requires supporting analysis to predict what the future crash population will look like and to assess how the countermeasures either already in place or planned will address the crash problems forecast. This analysis aimed to identify future priority action areas for light vehicle safety by identifying crash types that will not be fully addressed in the future by projected improvements in active and passive safety in the Australian light vehicle fleet. The future crash profile was modelled from 2017 to 2030 using crash data from 5 Australian jurisdictions overlayed with available evidence on vehicle safety feature fitment and effectiveness. The methodology can be applied to larger sets of safety technologies when sufficient evidence and supporting crash data become available. Three future vehicle safety priority areas were identified from the analysis: (i) fatal pedestrian crashes, (ii) single vehicle frontal crashes with objects, and (iii) front-to-front vehicle crashes both at intersections and midblocks, and front-to-side impacts at intersections including straight crossing path and right turn across path crash types. These crash types were projected to be the largest contributors to fatalities by 2030. Projections showed that remaining crash types in 2030 will be poorly addressed by current vehicle safety technologies such as autonomous emergency braking, lane departure warning and electronic stability control. Future vehicle safety policy priorities should address these crash types through the development of additional or enhanced vehicle safety technologies and where vehicle safety technology proves inadequate other countermeasures such as road infrastructure treatments and appropriate speed limit setting for high risk environments that address the key crash types remaining in the system.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Sign in / Sign up

Export Citation Format

Share Document