Optical Effects Module And Passive Sample Array

1983 ◽  
Author(s):  
R. C. Linton
2005 ◽  
Vol 71 (3) ◽  
Author(s):  
A. Migalska-Zalas ◽  
B. Sahraoui ◽  
I. V. Kityk ◽  
S. Tkaczyk ◽  
V. Yuvshenko ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Denis V. Novitsky ◽  
Dmitry Lyakhov ◽  
Dominik Michels ◽  
Dmitrii Redka ◽  
Alexander A. Pavlov ◽  
...  

AbstractUnique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 564
Author(s):  
Hong Shen ◽  
Longkun Yu ◽  
Xu Jing ◽  
Fengfu Tan

The turbulence moment of order m (μm) is defined as the refractive index structure constant Cn2 integrated over the whole path z with path-weighting function zm. Optical effects of atmospheric turbulence are directly related to turbulence moments. To evaluate the optical effects of atmospheric turbulence, it is necessary to measure the turbulence moment. It is well known that zero-order moments of turbulence (μ0) and five-thirds-order moments of turbulence (μ5/3), which correspond to the seeing and the isoplanatic angles, respectively, have been monitored as routine parameters in astronomical site testing. However, the direct measurement of second-order moments of turbulence (μ2) of the whole layer atmosphere has not been reported. Using a star as the light source, it has been found that μ2 can be measured through the covariance of the irradiance in two receiver apertures with suitable aperture size and aperture separation. Numerical results show that the theoretical error of this novel method is negligible in all the typical turbulence models. This method enabled us to monitor μ2 as a routine parameter in astronomical site testing, which is helpful to understand the characteristics of atmospheric turbulence better combined with μ0 and μ5/3.


2021 ◽  
Vol 9 (9) ◽  
pp. 3052-3057
Author(s):  
Jerzy J. Langer ◽  
Ewelina Frąckowiak

H+LEDs are light emitting devices based on a protonic p–n junction; now with no organic polymers. The unique are non-linear optical effects: collimated light beams and stimulated Raman scattering (SRS), observed while generating intense light pulses.


2019 ◽  
Vol 5 (9) ◽  
pp. 72
Author(s):  
Kamel Mouhoubi ◽  
Vincent Detalle ◽  
Jean-Marc Vallet ◽  
Jean-Luc Bodnar

Within the framework of conservation and assistance for the restoration of cultural property, a method of analysis assistance has been developed to help in the restoration of cultural heritage. Several collaborations have already demonstrated the possibility of defects detection (delamination, salts) in murals paintings using stimulated infrared thermography. One of the difficulties encountered with infrared thermography applied to the analysis of works of art is the remanence of the pictorial layer. This difficulty can sometimes induce detection artifacts and false positives. A method of thermograms post-processing called PPT (pulse phase thermography) is described. The possibilities offered by the PPT in terms of reducing the optical effects associated with the pictorial layer are highlighted first with a simulation, and then through experiments. This approach can significantly improve the study of painted works of art such as wall paintings.


2001 ◽  
Vol 153 (3) ◽  
pp. 211-219 ◽  
Author(s):  
B. Butkiewicz ◽  
R. Golovchak ◽  
A. Kovalskiy ◽  
O. Shpotyuk ◽  
M. Vakiv

Sign in / Sign up

Export Citation Format

Share Document