Fiber-optic confocal probe with an integrated real-time apex finder for high-precision center thickness measurement of ball lenses

Author(s):  
Armote Somboonkaew ◽  
Ratthasart Amarit ◽  
Sataporn Chanhorm ◽  
Boonsong Sutapun
Sensors ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 8512-8526 ◽  
Author(s):  
Boonsong Sutapun ◽  
Armote Somboonkaew ◽  
Ratthasart Amarit ◽  
Sataporn Chanhorm

Brachytherapy ◽  
2015 ◽  
Vol 14 ◽  
pp. S27-S28 ◽  
Author(s):  
Matthew D. Belley ◽  
Brian W. Langloss ◽  
Ian N. Stanton ◽  
Sheridan Meltsner ◽  
Oana Craciunescu ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 61570-61580 ◽  
Author(s):  
Weichen Li ◽  
Junying Xia ◽  
Ge Zhang ◽  
Hang Ma ◽  
Benyuan Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Yong Park ◽  
Gina Faraci ◽  
Pamela M. Ward ◽  
Jane F. Emerson ◽  
Ha Youn Lee

AbstractCOVID-19 global cases have climbed to more than 33 million, with over a million total deaths, as of September, 2020. Real-time massive SARS-CoV-2 whole genome sequencing is key to tracking chains of transmission and estimating the origin of disease outbreaks. Yet no methods have simultaneously achieved high precision, simple workflow, and low cost. We developed a high-precision, cost-efficient SARS-CoV-2 whole genome sequencing platform for COVID-19 genomic surveillance, CorvGenSurv (Coronavirus Genomic Surveillance). CorvGenSurv directly amplified viral RNA from COVID-19 patients’ Nasopharyngeal/Oropharyngeal (NP/OP) swab specimens and sequenced the SARS-CoV-2 whole genome in three segments by long-read, high-throughput sequencing. Sequencing of the whole genome in three segments significantly reduced sequencing data waste, thereby preventing dropouts in genome coverage. We validated the precision of our pipeline by both control genomic RNA sequencing and Sanger sequencing. We produced near full-length whole genome sequences from individuals who were COVID-19 test positive during April to June 2020 in Los Angeles County, California, USA. These sequences were highly diverse in the G clade with nine novel amino acid mutations including NSP12-M755I and ORF8-V117F. With its readily adaptable design, CorvGenSurv grants wide access to genomic surveillance, permitting immediate public health response to sudden threats.


2021 ◽  
Vol 62 ◽  
pp. 102465
Author(s):  
Karol Salwik ◽  
Łukasz Śliwczyński ◽  
Przemysław Krehlik ◽  
Jacek Kołodziej

2021 ◽  
Vol 6 (2) ◽  
pp. 421-428
Author(s):  
Matteo Palieri ◽  
Benjamin Morrell ◽  
Abhishek Thakur ◽  
Kamak Ebadi ◽  
Jeremy Nash ◽  
...  
Keyword(s):  

Author(s):  
Tingting Yin ◽  
Zhong Yang ◽  
Youlong Wu ◽  
Fangxiu Jia

The high-precision roll attitude estimation of the decoupled canards relative to the projectile body based on the bipolar hall-effect sensors is proposed. Firstly, the basis engineering positioning method based on the edge detection is introduced. Secondly, the simplified dynamic relative roll model is established where the feature parameters are identified by fuzzy algorithms, while the high-precision real-time relative roll attitude estimation algorithm is proposed. Finally, the trajectory simulations and grounded experiments have been conducted to evaluate the advantages of the proposed method. The positioning error is compared with the engineering solution method, and it is proved that the proposed estimation method has the advantages of the high accuracy and good real-time performance.


Sign in / Sign up

Export Citation Format

Share Document