Sci-Fri AM(1): Imaging-01: Characterization of an Avalanche Detector for Low-Dose X-Ray Imaging

2009 ◽  
Vol 36 (9Part3) ◽  
pp. 4321-4321
Author(s):  
M Wronski ◽  
A Reznik ◽  
J Rowlands ◽  
W Zhao
Keyword(s):  
Low Dose ◽  
X Ray ◽  
2004 ◽  
Author(s):  
Santosh V. Vadawale ◽  
Jae Sub Hong ◽  
Jonathan E. Grindlay ◽  
Peter Williams ◽  
Minhua Zhang ◽  
...  

2018 ◽  
Vol 89 (10) ◽  
pp. 10G124 ◽  
Author(s):  
C. Stoeckl ◽  
T. Filkins ◽  
R. Jungquist ◽  
C. Mileham ◽  
N. R. Pereira ◽  
...  
Keyword(s):  
X Ray ◽  

2014 ◽  
Vol 64 (12) ◽  
pp. 1907-1911
Author(s):  
Uikyu Je ◽  
Hyosung Cho ◽  
Minsik Lee ◽  
Jieun Oh ◽  
Yeonok Park ◽  
...  

2019 ◽  
Vol 66 (1) ◽  
pp. 518-523
Author(s):  
Madan Niraula ◽  
Kazuhito Yasuda ◽  
Shintaro Tsubota ◽  
Taiki Yamaguchi ◽  
Junya Ozawa ◽  
...  

Author(s):  
A Zachary Trimble ◽  
Brennan Yammamoto ◽  
Jingjing Li

The expanding use of materials that are difficult to join with traditional techniques drives an urgent need, in a wide array of industries, to develop and characterize production capable joining processes. Friction stir blind riveting (FSBR) is such a process. However, full adoption of FSBR requires more complete characterization of the process. The relatively inexpensive, portable FSBR machine discussed here facilitates in situ X-ray imaging of the FSBR process, which will enhance the ability of researchers to understand and improve the FSBR process. Real-time, unobstructed, angular X-ray access drives the functional requirements and design considerations of the machine. The acute angular access provided by the machine necessitates tradeoffs in stiffness and Abbe errors. An error budget quantifies the effect of the various trade-offs on likely sensitive directions and relationships. Additionally, the machine motivates more test parameters important to machine designers (e.g., parallelism and runout) that have not yet been explored in the literature. Ultimately, a machine has been developed, which has a single rotational axis that translates parallel to the rotational axis, can be built for under $12,000, has a mass of less than 110 kg, measures 915 mm × 254 mm × 624 mm, has a rotational speed range of 400–8000 RPM, has a feed rate range of 0.1–200 mm/min, can be installed on most test benches, has total rivet runout of 0.1 mm, has plunge and rotational axis parallelism of less than 0.1 deg, and has a plunge axis repeatability of better than 2  μ m over a 10 mm range.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Arnav R. Mistry ◽  
Daniel Uzbelger Feldman ◽  
Jie Yang ◽  
Eric Ryterski

Objective(s). The major challenge encountered to decrease the milliamperes (mA) level in X-ray imaging systems is the quantum noise phenomena. This investigation evaluated dose exposure and image resolution of a low dose X-ray imaging (LDXI) prototype comprising a low mA X-ray source and a novel microlens-based sensor relative to current imaging technologies.Study Design. A LDXI in static (group 1) and dynamic (group 2) modes was compared to medical fluoroscopy (group 3), digital intraoral radiography (group 4), and CBCT scan (group 5) using a dental phantom.Results. The Mann-Whitney test showed no statistical significance(α=0.01)in dose exposure between groups 1 and 3 and 1 and 4 and timing exposure (seconds) between groups 1 and 5 and 2 and 3. Image resolution test showed group 1 > group 4 > group 2 > group 3 > group 5.Conclusions. The LDXI proved the concept for obtaining a high definition image resolution for static and dynamic radiography at lower or similar dose exposure and smaller pixel size, respectively, when compared to current imaging technologies. Lower mA at the X-ray source and high QE at the detector level principles with microlens could be applied to current imaging technologies to considerably reduce dose exposure without compromising image resolution in the near future.


1999 ◽  
Author(s):  
Reza A. Zoroofi ◽  
Shinichi Tamura ◽  
Yoshinobu Sato ◽  
Yuji Ogata ◽  
Kazuo Inamoto ◽  
...  
Keyword(s):  
Low Dose ◽  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document