Local inertial frame of reference demonstration

1980 ◽  
Vol 48 (4) ◽  
pp. 310-311 ◽  
Author(s):  
R. E. Berg
Author(s):  
Stefan Von Weber ◽  
Alexander Von Eye

The Cosmic Membrane theory states that the space in which the cosmic microwave background radiation has no dipole is identical with Newton’s absolute space. Light propagates in this space only. In contrast, in a moving inertial frame of reference light propagation is in-homogeneous, i.e. it depends on the direction. Therefore, the derivation of the dilation of time in the sense of Einstein’s special relativity theory, i.e., together with the derivation of the length contraction under the constraint of constant cross dimensions, loses its plausibility, and one has to search for new physical foundations of the relativistic contraction and dilation of time. The Cosmic Membrane theory states also that light paths remain always constant independent on the orientation and the speed of the moving inertial frame of reference. Effects arise by the dilation of time. We predict a long term effect of the Kennedy-Thorndike experiment, but we show also that this effect is undetectable with today’s means. The reason is that the line width of the light sources hides the effect. The use of lasers, cavities and Fabry-Pérot etalons do not change this. We propose a light clock of special construction that could indicate Newton’s absolute time t0 nearly precisely.


2021 ◽  
pp. 1-8
Author(s):  
Andrew M. Steane

Notation and sign conventions adopted for the rest of the book are explained. The book employs index notation, but not abstract index notation. The metric signature for GR is taken as (-1,1,1,1). Terminology such as “local inertial frame” and “Rieman normal coordinates” is explained.


1986 ◽  
Vol 7 ◽  
pp. 101-102
Author(s):  
C A Murray

Astrometry can be defined as the measurement of space-time coordinates of photon events. For example, in principle, in classical optical astrometry, we measure the components of velocity, and hence the direction, of an incoming photon with respect to an instrumental coordinate system, and the clock time, at the instant of detection. The observer’s coordinate system at any instant can be identified with a local inertial frame. In the case of interferometric observations, the measurements are of clock times of arrival of a wavefront at two detectors whose spatial coordinates are specified with respect to instantaneous inertial frames.


2021 ◽  
Vol 230 ◽  
pp. 116137
Author(s):  
Bastien Delacroix ◽  
Juliane Rastoueix ◽  
Louis Fradette ◽  
François Bertrand ◽  
Bruno Blais

1968 ◽  
Vol 1 ◽  
pp. 301-305 ◽  
Author(s):  
W. Fricke ◽  
W. Gliese

A fundamental catalogue compiled from independent and differential observations of stellar positions at various epochs provides the fundamental system of positions and proper motions of the stars. The system ought to be compiled in such a way that it represents the inertial frame of reference as accurately as practicable. Its direct purpose is to serve as the reference system of positional astronomy. It should fulfil the requirements of astronomical research, in particular in celestial mechanics and galactic research, as well as the demands of the astronomical determinations of time and of latitudes. It has also to fulfil the requirements of geodesy and navigation. For all these purposes the system must be uniform over the whole sky (free from regional systematic errors), and it has to be uniform over a large range of stellar magnitudes (free from errors depending on the magnitude of the stars).


Accurate experiments have shown that the local inertial frame is the one with respect to which the distant parts of the universe are non-rotating. This coincidence, first noticed by Newton, later led to the formulation of Mach’s principle. It is known that relativity theory by itself cannot explain this coincidence. The introduction of a scalar ‘creation field’ into the theory is likely to improve the situation. Calculation shows that the continuous creation of matter has the effect of smoothing out any irregularities in the universe as it expands, while rotation, if present, becomes less and less. This explains the observed remarkable degree of homogeneity and isotropy in the universe.


Sign in / Sign up

Export Citation Format

Share Document