Regularization methods for delta-function potential in two-dimensional quantum mechanics

2000 ◽  
Vol 68 (6) ◽  
pp. 571-575 ◽  
Author(s):  
Su-Long Nyeo
2014 ◽  
Vol 54 (2) ◽  
pp. 156-172
Author(s):  
Osman Teoman Turgut Teoman Turgut ◽  
Cem Eröncel

Renormalization is one of the deepest ideas in physics, yet its exact implementation in any interesting problem is usually very hard. In the present work, following the approach by Glazek and Maslowski in the flat space, we will study the exact renormalization of the same problem in a nontrivial geometric setting, namely in the two dimensional hyperbolic space. Delta function potential is an asymptotically free quantum mechanical problem which makes it resemble nonabelian gauge theories, yet it can be treated exactly in this nontrivial geometry.


Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 137
Author(s):  
Vieri Benci ◽  
Lorenzo Luperi Baglini ◽  
Kyrylo Simonov

Non-Archimedean mathematics is an approach based on fields which contain infinitesimal and infinite elements. Within this approach, we construct a space of a particular class of generalized functions, ultrafunctions. The space of ultrafunctions can be used as a richer framework for a description of a physical system in quantum mechanics. In this paper, we provide a discussion of the space of ultrafunctions and its advantages in the applications of quantum mechanics, particularly for the Schrödinger equation for a Hamiltonian with the delta function potential.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750043 ◽  
Author(s):  
Anzor Khelashvili ◽  
Teimuraz Nadareishvili

We show that additional solutions must be ignored (in differences of the Schrödinger and Klein–Gordon equations) in the Dirac equation, where usually the second-order radial equation is passed, called the reduced equation, instead of a system. Analogously to the Schrödinger equation, in this process, the Dirac’s delta function appears, which was unnoted during the full history of quantum mechanics. This unphysical term we remove by a boundary condition at the origin. However, the distribution theory imposes on the radial function strong restriction and by this reason practically for all potentials, even regular, use of these reduced equations is not permissible. At the end, we include consideration in the framework of two-dimensional Dirac equation. We show that even here the additional solution does not survive as a result of usual physical requirements.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


Author(s):  
ANDREI KHRENNIKOV

We develop Fourier analysis over hyperbolic algebra (the two-dimensional commutative algebra with the basis e1 = 1, e2 = j, where j2 = 1). We demonstrated that classical mechanics has, besides the well-known quantum deformation over complex numbers, another deformation — so-called hyperbolic quantum mechanics. The classical Poisson bracket can be obtained as the limit h → 0 not only of the ordinary Moyal bracket, but also a hyperbolic analogue of the Moyal bracket.


2010 ◽  
Vol 25 (09) ◽  
pp. 715-725
Author(s):  
B. BASU-MALLICK ◽  
TANAYA BHATTACHARYYA

We investigate the boson–fermion duality relation for the case of quantum integrable derivative δ-function Bose gas. In particular, we find a dual fermionic system with nonvanishing zero-range interaction for the simplest case of two bosonic particles with derivative δ-function interaction. The coupling constant of this dual fermionic system becomes inversely proportional to the product of the coupling constant of its bosonic counterpart and the center-of-mass momentum of the corresponding eigenfunction.


2013 ◽  
Vol 10 (03) ◽  
pp. 1220031 ◽  
Author(s):  
D. M. XUN ◽  
Q. H. LIU

A two-dimensional (2D) surface can be considered as three-dimensional (3D) shell whose thickness is negligible in comparison with the dimension of the whole system. The quantum mechanics on surface can be first formulated in the bulk and the limit of vanishing thickness is then taken. The gradient operator and the Laplace operator originally defined in bulk converges to the geometric ones on the surface, and the so-called geometric momentum and geometric potential are obtained. On the surface of 2D sphere the geometric momentum in the Monge parametrization is explicitly explored. Dirac's theory on second-class constrained motion is resorted to for accounting for the commutator [xi, pj] = iℏ(δij - xixj/r2) rather than [xi, pj] = iℏδij that does not hold true anymore. This geometric momentum is geometric invariant under parameters transformation, and self-adjoint.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Z. Alizadeh ◽  
H. Panahi

We construct two-dimensional integrable and superintegrable systems in terms of the master function formalism and relate them to Mielnik’s and Marquette’s construction in supersymmetric quantum mechanics. For two different cases of the master functions, we obtain two different two-dimensional superintegrable systems with higher order integrals of motion.


Sign in / Sign up

Export Citation Format

Share Document