scholarly journals An undergraduate experiment to illustrate spatial transfer function concepts in Fourier optics

2020 ◽  
Vol 88 (8) ◽  
pp. 617-624
Author(s):  
Jérôme Salvi ◽  
Gil Fanjoux ◽  
Anne Boetsch ◽  
Remo Giust
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4859
Author(s):  
Leigh Stanger ◽  
Thomas Rockett ◽  
Alistair Lyle ◽  
Matthew Davies ◽  
Magnus Anderson ◽  
...  

This article elucidates the need to consider the inherent spatial transfer function (blur), of any thermographic instrument used to measure thermal fields. Infrared thermographic data were acquired from a modified, commercial, laser-based powder bed fusion printer. A validated methodology was used to correct for spatial transfer function errors in the measured thermal fields. The methodology was found to make a difference of 40% to the measured signal levels and a 174 °C difference to the calculated effective temperature. The spatial gradients in the processed thermal fields were found to increase significantly. These corrections make a significant difference to the accuracy of validation data for process and microstructure modeling. We demonstrate the need for consideration of image blur when quantifying the thermal fields in laser-based powder bed fusion in this work.


1997 ◽  
Vol 14 (1) ◽  
pp. 169-185 ◽  
Author(s):  
Ethan A. Benardete ◽  
Ehud Kaplan

AbstractThe ganglion cells of the primate retina include two major anatomical and functional classes: P cells which project to the four parvocellular layers of the lateral geniculate nucleus (LGN), and M cells which project to the two magnocellular layers. The characteristics of the P-cell receptive field are central to understanding early form and color vision processing (Kaplan et al., 1990; Schiller & Logothetis, 1990). In this and in the following paper, P-cell dynamics are systematically analyzed in terms of linear and nonlinear response properties. Stimuli that favor either the center or the surround of the receptive field were produced on a CRT and modulated with a broadband signal composed of multiple m-sequences (Benardete et al., 1992b; Benardete & Victor, 1994). The first-order responses were calculated and analyzed in this paper (part I). The findings are: (1) The first-order responses of the center and surround depend linearly on contrast. (2) The dynamics of the center and surround are well described by a bandpass filter model. The most significant difference between center and surround dynamics is a delay of approximately 8 ms in the surround response. (3) In the LGN, these responses are attenuated and delayed by an additional 1–5 ms. (4) The spatial transfer function of the P cell in response to drifting sine gratings at three temporal frequencies was measured. This independent method confirmed the delay between the (first-order) responses of the center and surround. This delay accounts for the dependence of the spatial transfer function on the frequency of stimulation.


1983 ◽  
Vol 82 (5) ◽  
pp. 573-598 ◽  
Author(s):  
D Tranchina ◽  
J Gordon ◽  
R Shapley

Luminosity horizontal cells in the turtle retina respond approximately linearly to visual stimuli with contrast levels spanning a large part of the physiological range. We characterized the response properties of these cells under conditions of low photopic background illumination by measuring their spatial and temporal frequency transfer functions. Our experimental results indicate in two ways that, under these conditions, feedback from luminosity horizontal cells to cones does not play a major role in the mechanisms underlying the spatial and temporal tuning of horizontal cell responses. First, the shape of the spatial transfer function depended only weakly on the temporal frequency with which it was measured. Second, the shape of the temporal transfer function depended only weakly on the spatial frequency with which it was measured.


2006 ◽  
Vol 77 (10) ◽  
pp. 10F110 ◽  
Author(s):  
M. W. Shafer ◽  
R. J. Fonck ◽  
G. R. McKee ◽  
D. J. Schlossberg

Author(s):  
H.A. Cohen ◽  
W. Chiu

The goal of imaging the finest detail possible in biological specimens leads to contradictory requirements for the choice of an electron dose. The dose should be as low as possible to minimize object damage, yet as high as possible to optimize image statistics. For specimens that are protected by low temperatures or for which the low resolution associated with negative stain is acceptable, the first condition may be partially relaxed, allowing the use of (for example) 6 to 10 e/Å2. However, this medium dose is marginal for obtaining the contrast transfer function (CTF) of the microscope, which is necessary to allow phase corrections to the image. We have explored two parameters that affect the CTF under medium dose conditions.Figure 1 displays the CTF for carbon (C, row 1) and triafol plus carbon (T+C, row 2). For any column, the images to which the CTF correspond were from a carbon covered hole (C) and the adjacent triafol plus carbon support film (T+C), both recorded on the same micrograph; therefore the imaging parameters of defocus, illumination angle, and electron statistics were identical.


Sign in / Sign up

Export Citation Format

Share Document