Sound pressure changes in the ear canal produced by local damage to the inner ear

1983 ◽  
Vol 73 (S1) ◽  
pp. S80-S80 ◽  
Author(s):  
S. M. Khanna ◽  
M. J. Galley
1982 ◽  
Vol 91 (2) ◽  
pp. 209-215 ◽  
Author(s):  
Björn Carlborg ◽  
Barbara Densert ◽  
Ove Densert

The perilymphatic (P P) and cerebrospinal fluid (P CSF) pressures were investigated in relation to pressure variations in the ear canal, middle ear and intracranial compartment before and after occlusion of the cochlear aqueduct (CA). Experiments using intracranial infusion showed that the CA was responsible for a perfect hydrodynamic balance between the CSF and the perilymph. There are indications of additional pressure release factors but their capacities were not sufficient to prevent the appearance of a longstanding and substantial pressure gradient following occlusion of the CA. A gradual P P build-up, from zero to its original level after the CA was opened and occluded, indicated perilymph production within the labyrinth. Investigation of pressure transfer from the ear canal and middle ear to the perilymph showed that the CA was the major pressure release route from the cochlea. Occlusion of the CA reduced the compliance of the inner ear and severely reduced the pressure release capacity. In such a situation the inner ear is almost incapable of equilibrating ambient pressure changes.


1965 ◽  
Vol 8 (2) ◽  
pp. 137-148 ◽  
Author(s):  
David P. Goldstein ◽  
Claude S. Hayes

This experiment tested the hypothesis that the occlusion effect is accompanied by an increase in sound pressure level in the external auditory canal. Pure tone bone conduction thresholds and sound pressure levels were measured, first with the ear canal open, then with the ear canal closed, at two positions of the bone vibrator and at five frequencies in 28 normal listeners. Statistical analyses revealed a significant difference between measures at 250, 500, and 1 000 cps but not at 2 000 and 4 000 cps. Average sound pressure level shifts tended to be larger than their threshold measure counterparts. The two measures, nevertheless, yielded positive correlations.


1989 ◽  
Vol 257 (3) ◽  
pp. F341-F346 ◽  
Author(s):  
E. Bartoli ◽  
A. Satta ◽  
F. Melis ◽  
M. A. Caria ◽  
W. Masala ◽  
...  

We tested the hypothesis that changes in extracellular fluid volume are reflected by pressure changes within structures of the inner ear and that through neural pathways, a control mechanism exerts an influence on antidiuretic hormone (ADH) release and Na excretion. The study was performed on 35 guinea pigs. In protocol 1, 13 animals were studied before and after decompression of the inner ear by bilateral fluid withdrawal in an experimental setting of sustained isotonic expansion that kept the osmoreceptor partially activated and the intrathoracic volume receptors suppressed. A group of six sham-operated animals served as control. In protocol 2, nine animals were studied before and after a unilateral rise in their inner ear pressure during slightly hypertonic low-rate infusions that kept the osmoreceptor and thoracic volume receptors stimulated. A group of seven sham-operated guinea pigs served as controls. Decompression of the inner ear was attended by a rise in plasma ADH from 11.9 +/- 2.4 to 29.1 +/- 6.9 pg/ml, in urine osmolality (Uosmol) from 470 +/- 48 to 712 +/- 46 mosmol/kg (P less than 0.001), and a fall in urine flow rate (V) from 184 +/- 47 to 71 +/- 11 microliters/min (P less than 0.01), whereas plasma Na (PNa) and osmolality (Posmol) did not change. During inner ear hypertension, plasma ADH fell from 25.6 +/- 3.9 to 18.4 +/- 3.1, Uosmol from 829 +/- 58 to 627 +/- 43 (P less than 0.001), and V rose from 51 +/- 11 to 130 +/- 23 (P less than 0.001), whereas glomerular filtration rate, PNa, and Posmol did not change.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 10 (4) ◽  
pp. 254-258 ◽  
Author(s):  
Judith A. Feigin ◽  
Judy G. Kopun ◽  
Patricia G. Stelmachowicz ◽  
Michael P. Gorga

2018 ◽  
Vol 37 (4) ◽  
pp. 1030-1036 ◽  
Author(s):  
Niloofar Ziayi Ghahnavieh ◽  
Siamak Pourabdian ◽  
Farhad Forouharmajd

Sound is one of the most important problems in industrial environments, and it causes hearing loss at different frequencies in the workforce. Incorrect fitting of hearing protector has a negative effect on noise reduction. The present study was conducted with the aim of determination of the effective frequencies on hearing loss and variations of the sound level in different frequencies after placing the earplug. A model of ear canal with different materials was simulated. Sound pressure sensors and earplugs were placed in both sides of the ear canal. The rates of sound reduction in octave frequency signals were calculated for the simulated canal of different materials, in different distances between the microphone and the earplug with Labview software. The results of sound simulation in octave frequency signals showed that by increasing the frequency, the rates of sound reduction in different conditions also had an increasing trend. The obtained peak rates for all the situations coincided with each other at fixed frequencies. In most cases, a noise reduction in the frequency of 4000 Hz showed a high number. The maximum sound reduction was observed at 25.5 mm at frequencies below 250 Hz, which was similar to the average of human ear canal length; so the simulated model can be used to determine the performance of the protective earphones and test them at different frequencies and sound pressure levels.


2006 ◽  
Vol 120 (5) ◽  
pp. 3159-3159
Author(s):  
Michael R. Stinson ◽  
Gilles A. Daigle
Keyword(s):  

2005 ◽  
Vol 117 (4) ◽  
pp. 2564-2564
Author(s):  
Michael R. Stinson ◽  
Gilles A. Daigle

Sign in / Sign up

Export Citation Format

Share Document