scholarly journals Protective earphones and human hearing system response to the received sound frequency signals

2018 ◽  
Vol 37 (4) ◽  
pp. 1030-1036 ◽  
Author(s):  
Niloofar Ziayi Ghahnavieh ◽  
Siamak Pourabdian ◽  
Farhad Forouharmajd

Sound is one of the most important problems in industrial environments, and it causes hearing loss at different frequencies in the workforce. Incorrect fitting of hearing protector has a negative effect on noise reduction. The present study was conducted with the aim of determination of the effective frequencies on hearing loss and variations of the sound level in different frequencies after placing the earplug. A model of ear canal with different materials was simulated. Sound pressure sensors and earplugs were placed in both sides of the ear canal. The rates of sound reduction in octave frequency signals were calculated for the simulated canal of different materials, in different distances between the microphone and the earplug with Labview software. The results of sound simulation in octave frequency signals showed that by increasing the frequency, the rates of sound reduction in different conditions also had an increasing trend. The obtained peak rates for all the situations coincided with each other at fixed frequencies. In most cases, a noise reduction in the frequency of 4000 Hz showed a high number. The maximum sound reduction was observed at 25.5 mm at frequencies below 250 Hz, which was similar to the average of human ear canal length; so the simulated model can be used to determine the performance of the protective earphones and test them at different frequencies and sound pressure levels.

2020 ◽  
Vol 35 (4) ◽  
pp. 227-232
Author(s):  
Haley Busenbarrick ◽  
Kathleen L. Davenport

Enduring exposure to high sound pressure levels (SPLs) can lead to noise-induced hearing loss (NIHL). In the performing arts population, NIHL has been studied primarily in the context of sound exposure experienced by musicians and less so by dancers. This research aimed to identify sound exposure that dancers may experience in some dance classes. Decibel levels were recorded in 12 dance classes (6 ballet, 4 modern, and 1 soft and 1 hard shoe Irish dance) at 8 different studios using the NIOSH SLM app on an iOS smartphone with external microphone. A minimum of five recordings of each class was measured, each collected on a different day, yielding a total of 114 measurements. Results showed that 20.2% of all recordings exceeded the recommended NIOSH sound exposure limits of both 100% projected daily dose and 85 LAeq. Analysis between styles of dance demonstrated significantly lower LAeq (p≤0.05) in soft shoe Irish dance compared to ballet (p=0.023), modern (p=0.035), and Irish hard shoe dance (p=0.009). Irish soft shoe dance demonstrated minimal to no risk of high sound exposure. Conversely, 53.25% of ballet, 90.9% of Irish hard shoe dance, and 68.24% of modern recordings exhibited minimal to moderate risk of high sound exposure. Furthermore, we found wide ranges of projected daily noise doses within classes taught by the same teacher. It is recommended that multiple recordings of dance environments be obtained, as a single sound recording may not accurately represent potential exposure. These findings indicate that dancers of Irish hard shoe, modern, and ballet may benefit from noise intervention such as audiometric testing, noise controls, and hearing protection.


2021 ◽  
pp. 095745652110526
Author(s):  
Tarek M. El-Basheer

Audiometry is a branch of acoustical measurements that concentrated on testing the devices related to hearing and used in medical part such as audiometer. It is substantial to calibrate the audiometer to assure the measurement traceability and to safe human health. So, it is considered as a major claim. The importance of calibration comes from the request for advanced instrument to test accurately the hearing loss for human, especially for those people who might be at risk due to noise. The conventional audiometry covered from 125 to 8 kHz, while the extended high-frequency (EHF) audiometry above 8 up to 20 kHz, the last-mentioned type may be useful in early diagnosis of hearing loss. The audiometer calibration performed using ear simulator, standard or working microphone, sound level meter, and frequency analyzer according to IEC60645-1. The physical parameters such as sound pressure level, frequency and distortion may be affected by environmental conditions such as temperature change. The gained results observed that the measured value of all the tests performed was affected by temperature variation. There were deviations observed from each performed test’s nominal values in the calibration process as the temperature varies from 16 to 40°C. So, this is a detailed study for the significance, method, and uncertainty estimation for audiometer calibration covering the EHF ranges within the temperature from 16 to 40°C.


2021 ◽  
Vol 63 (8) ◽  
pp. 479-487
Author(s):  
Zhaoting Liu ◽  
Longqing Zou ◽  
Xianglou Liu ◽  
Jiale Qiao ◽  
Xiangbin Meng

To solve the key problem of diagnosing the operating condition of an oil transfer pump unit in a 3D closed space, this paper presents an approach for a point sound source location and detection method based on a hemispheric distributed sound pressure sensor array. The array model consists of 19 sound pressure sensors acting in the radial direction and uniformly distributed over the hemispherical surface. A spatial rectangular coordinate system is established by taking the projection point of the central sensor arranged at the apex of the hemisphere to the ground as the origin of the spatial coordinates. With reference to the central sensor, the point sound source is located by selecting the maximum measured sound level and its spatial coordinate in each of the three layers of sensors surrounding it as parameters and using a triangular or a quadrilateral area location algorithm based on virtual instrument technology. According to the location of the source, the A-weighted sound level of the sound source point is derived by the inversion of the sound field distribution law. Results show that the triangular and quadrilateral area location algorithms are both effective. The errors in location become larger for a measured sound source far from the centre.


Author(s):  
David C. Byrne ◽  
Christa L. Themann ◽  
Deanna K. Meinke ◽  
Thais C. Morata ◽  
Mark R. Stephenson

An audiologist should be the principal provider and advocate for all hearing loss prevention activities. Many audiologists equate hearing loss prevention with industrial audiology and occupational hearing conservation programs. However, an audiologist’s involvement in hearing loss prevention should not be confined to that one particular practice setting. In addition to supervising occupational programs, audiologists are uniquely qualified to raise awareness of hearing risks, organize public health campaigns, promote healthy hearing, implement intervention programs, and monitor outcomes. For example, clinical audiologists can show clients how to use inexpensive sound level meters, noise dosimeters, or phone apps to measure noise levels, and recommend appropriate hearing protection. Audiologists should identify community events that may involve hazardous exposures and propose strategies to minimize risks to hearing. Audiologists can help shape the knowledge, beliefs, motivations, attitudes, and behaviors of individuals toward self-protection. An audiologist has the education, tools, opportunity, and strategic position to facilitate or promote hearing loss surveillance and prevention services and activities. This article highlights real-world examples of the various roles and substantial contributions audiologists can make toward hearing loss prevention goals.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Dominik Gryboś ◽  
Jacek S. Leszczyński ◽  
Dorota Czopek ◽  
Jerzy Wiciak

In this paper, we demonstrate how to reduce the noise level of expanded air from pneumatic tools. Instead of a muffler, we propose the expanded collecting system, where the air expands through the pneumatic tube and expansion collector. We have elaborated a mathematical model which illustrates the dynamics of the air flow, as well as the acoustic pressure at the end of the tube. The computational results were compared with experimental data to check the air dynamics and sound pressure. Moreover, the study presents the methodology of noise measurement generated in a pneumatic screwdriver in a quiet back room and on a window-fitting stand in a production hall. In addition, we have performed noise measurements for the pneumatic screwdriver and the pneumatic screwdriver on an industrial scale. These measurements prove the noise reduction of the pneumatic tools when the expanded collecting system is used. When the expanded collecting system was applied to the screwdriver, the measured Sound Pressure Level (SPL) decreased from 87 to 80 dB(A).


2014 ◽  
Vol 1001 ◽  
pp. 171-176 ◽  
Author(s):  
Pavol Liptai ◽  
Marek Moravec ◽  
Miroslav Badida

This paper describes possibilities in the use of recycled rubber granules and textile materials combined with vermiculite panel. The aim of the research is the application of materials that will be absorbing or reflecting sound energy. This objective is based on fundamental physical principles of materials research and acoustics. Method of measurement of sound absorption coefficient is based on the principle of standing wave in the impedance tube. With a sound level meter is measured maximum and minimum sound pressure level of standing wave. From the maximum and minimum sound pressure level of standing wave is calculated sound absorption coefficient αn, which can take values from 0 to 1. Determination of the sound absorption coefficient has been set in 1/3 octave band and in the frequency range from 50 Hz to 2000 Hz. In conclusion are proposed possibilities of application of these materials in terms of their mechanical and physical parameters.


1965 ◽  
Vol 8 (2) ◽  
pp. 137-148 ◽  
Author(s):  
David P. Goldstein ◽  
Claude S. Hayes

This experiment tested the hypothesis that the occlusion effect is accompanied by an increase in sound pressure level in the external auditory canal. Pure tone bone conduction thresholds and sound pressure levels were measured, first with the ear canal open, then with the ear canal closed, at two positions of the bone vibrator and at five frequencies in 28 normal listeners. Statistical analyses revealed a significant difference between measures at 250, 500, and 1 000 cps but not at 2 000 and 4 000 cps. Average sound pressure level shifts tended to be larger than their threshold measure counterparts. The two measures, nevertheless, yielded positive correlations.


2000 ◽  
Author(s):  
C. Gibbons ◽  
R. N. Miles

Abstract A miniature silicon condenser microphone diaphragm has been designed that exhibits good predicted directionality, sensitivity, and reliability. The design was based on the structure of a fly’s ear (Ormia ochracea) that has highly directional hearing through mechanical coupling of the eardrums. The diaphragm that is 1mm × 2mm × 20 microns is intended to be fabricated out of polysilicon through microelectromechanical micromachining. It was designed through the finite-element method in ANSYS in order to build the necessary mode shapes and frequencies into the mechanical behavior of the design. Through postprocessing of the ANSYS data, the diaphragm’s response to an arbitrary sound source, sensitivity, robustness, and Articulation Index - Directivity Index (AI-DI) were predicted. The design should yield a sensitivity as high as 100 mV/Pa, an AI-DI of 4.764 with Directivity Index as high as 6 between 1.5 and 5 kHz. The diaphragm structure was predicted be able to withstand a sound pressure level of 151.74 dB. The sound level that would result in collapse of the capacitive sensor is 129.9 dB.. The equivalent sound level due to the self-noise of the microphone is predicted to be 30.8 dBA.


2021 ◽  
Author(s):  
Zonghan Sun ◽  
Jie Tian ◽  
Grzegorz Liśkiewicz ◽  
Zhaohui Du ◽  
Hua Ouyang

Abstract A noise reduction method for axial flow fans using a short inlet duct is proposed. The pattern of noise reduction imposed by the short inlet duct on the axial flow cooling fan under variable working conditions was experimentally and numerically examined. A 2-cm inlet duct was found to reduce tonal noise. As the tip Mach number of the fan increased from 0.049 to 0.156, the reduction in the total average sound pressure level at 1 m from the fan increased from 0.8 dB(A) to 4.3 dB(A), and further achieved 4.8 dB(A) when a 1-cm inlet duct was used. The steady computational fluid dynamics (CFD) showed that the inlet duct has little effect on the aerodynamic performance of the fan. The results of the full passage unsteady calculation at the maximum flow rate showed that the duct has a significant influence on the suction vortexes caused by the inlet flow non-uniformity. The suction vortexes move upstream to weaken the interaction with the rotor blades, which significantly reduces the pulsating pressure on the blades. The sound pressure level (SPL) at the blade passing frequency (BPF) contributed by the thrust force was calculated to reduce by 36 dB at a 135° observer angle, reflecting the rectification effect of the duct on the non-uniform inlet flow and the improvement in characteristics of the noise source. The proper orthogonal decomposition (POD) of the static pressure field on the blades verified that the main spatial mode is more uniformly distributed due to the duct, and energy owing to the rotor-inlet interaction decreases. A speed regulation strategy for the cooling fan with short inlet duct is proposed, which provides guidance for the application of this noise reduction method.


Sign in / Sign up

Export Citation Format

Share Document